Encyclopedia of Animal Cognition and Behavior

Living Edition
| Editors: Jennifer Vonk, Todd Shackelford

Passerine Sensory Systems

  • Cristián Gutiérrez-IbáñezEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-47829-6_913-1


A passerine is a bird that belongs to the order Passeriformes. This order has over 5,000 identified species, which makes up more than half of all bird species. The order is divided into three suborders: Tyranni (suboscines), Passeri (oscines), and the basal Acanthisitti.

Sensory systems are the peripheral neural structures where sensory transduction and transmission of sensory activity to the central nervous system take place.


Oscines (from Latin oscen, “songbird”) are the largest group of passerines, and they owe their name to their complex vocalizations, or songs, which they learn by imitating their conspecifics (in some cases heterospecifics, e.g., mocking birds Mimus polyglottos). Songbirds have received a great deal of attention from neuroethologists and neuroscientists because they are one of the few vertebrate models of vocal learning. However, most studies in avian sensory systems have focused in nonpasserine birds, like pigeons and chickens as general...

This is a preview of subscription content, log in to check access.


  1. Beason, R. C., & Nichols, J. E. (1984). Magnetic orientation and magnetically sensitive material in a transequatorial migratory bird. Nature, 309(5964), 151–153.CrossRefGoogle Scholar
  2. Berkhoudt, H. (1985). Special sense organs: Structure and function of avian taste receptors. Form and Function in Birds, 3, 463–496.Google Scholar
  3. Corfield, J. R., Price, K., Iwaniuk, A. N., Gutiérrez-Ibáñez, C., Birkhead, T., & Wylie, D. R. (2015). Diversity in olfactory bulb size in birds reflects allometry, ecology, and phylogeny. Frontiers in Neuroanatomy, 9, 102.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Cunningham, S. J., Alley, M. R., & Castro, I. (2011). Facial bristle feather histology and morphology in New Zealand birds: Implications for function. Journal of Morphology, 272(1), 118–128.  https://doi.org/10.1002/jmor.10908.CrossRefPubMedGoogle Scholar
  5. Dooling, R. J. (1992). Hearing in birds. In D. B. Webster, A. N. Popper, & R. R. Fay (Eds.), The evolutionary biology of hearing (pp. 545–559). New York: Springer.CrossRefGoogle Scholar
  6. Dooling, R. J., & Fay, R. R. (2000). In R. J. Dooling, R. R. Fay, & A. N. Popper (Eds.), Comparative hearing: Birds and reptiles (Vol. 13). New York: Springer.CrossRefGoogle Scholar
  7. Gaillard, I., Rouquier, S., & Giorgi, D. (2004). Olfactory receptors. Cellular and Molecular Life Sciences (CMLS), 61(4), 456–469.  https://doi.org/10.1007/s00018-003-3273-7.CrossRefGoogle Scholar
  8. Gewecke, M., & Woike, M. (1978). Breast feathers as an air current: Sense organ for the control of flight behaviour in a songbird Carduelis spinus. Zeitschrift Fur Tierpsychologie, 47(3), 293–298.  https://doi.org/10.1111/j.1439-0310.1978.tb01838.x.CrossRefGoogle Scholar
  9. Gleich, O., Dooling, R. J., & Manley, G. A. (2005). Audiogram, body mass, and basilar papilla length: Correlations in birds and predictions for extinct archosaurs. Naturwissenschaften, 92(12), 595–598.  https://doi.org/10.1007/s00114-005-0050-5.CrossRefPubMedGoogle Scholar
  10. Gottschaldt, K. (1985). Structure and function of avian somatosensory receptors. In A. King & J. McLelland (Eds.), Form and function in birds (Vol. 3, pp. 375–461). London: Academic.Google Scholar
  11. Gutiérrez-Ibáñez, C., Iwaniuk, A. N., & Wylie, D. R. (2009). The independent evolution of the enlargement of the principal sensory nucleus of the trigeminal nerve in three different groups of birds. Brain, Behavior and Evolution, 74(4), 280–294.CrossRefPubMedGoogle Scholar
  12. Hart, N. S., & Vorobyev, M. (2005). Modelling oil droplet absorption spectra and spectral sensitivities of bird cone photoreceptors. Journal of Comparative Physiology A, 191(4), 381–392.  https://doi.org/10.1007/s00359-004-0595-3.CrossRefGoogle Scholar
  13. Hart, N. S., Partridge, J. C., Cuthill, I., & Bennett, A. T. D. (2000). Visual pigments, oil droplets, ocular media and cone photoreceptor distribution in two species of passerine bird: The blue tit (Parus caeruleus L.) and the blackbird (Turdus merula L.) Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology, 186(4), 375–387.  https://doi.org/10.1007/s003590050437.CrossRefPubMedGoogle Scholar
  14. Heyers, D., Zapka, M., Hoffmeister, M., Wild, J. M., & Mouritsen, H. (2010). Magnetic field changes activate the trigeminal brainstem complex in a migratory bird. Proceedings of the National Academy of Sciences of the United States of America, 107(20), 9394–9399.  https://doi.org/10.1073/pnas.0907068107.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Klump, G. M. (2000). Sound localization in birds. In R. J. Dooling, R. R. Fay, & A. N. Popper (Eds.), Comparative hearing: Birds and reptiles (pp. 249–307). New York: Springer.  https://doi.org/10.1007/978-1-4612-1182-2_6.CrossRefGoogle Scholar
  16. Klump, G. M., Kretzschmar, E., & Curio, E. (1986). The hearing of an avian predator and its avian prey. Behavioral Ecology and Sociobiology, 18(5), 317–323.  https://doi.org/10.1007/BF00299662.CrossRefGoogle Scholar
  17. Knudsen, E. I., Blasdel, G. G., & Konishi, M. (1979). Sound localization by the barn owl (Tyto alba) measured with the search coil technique. Journal of Comparative Physiology A, 133(1), 1–11.  https://doi.org/10.1007/BF00663105.CrossRefGoogle Scholar
  18. Martin, G. R. (2017). The sensory ecology of birds. Oxford: Oxford University Press.CrossRefGoogle Scholar
  19. Moore, B. A., Pita, D., Tyrrell, L. P., & Fernández-Juricic, E. (2015). Vision in avian emberizid foragers: Maximizing both binocular vision and fronto-lateral visual acuity. Journal of Experimental Biology, 218(9), 1347–1358. Retrieved from http://jeb.biologists.org/content/218/9/1347.CrossRefPubMedGoogle Scholar
  20. Narins, P. M., Feng, A. S., Lin, W., Schnitzler, H.-U., Denzinger, A., Suthers, R. A., & Xu, C. (2004). Old world frog and bird vocalizations contain prominent ultrasonic harmonics. The Journal of the Acoustical Society of America, 115(2), 910–913.  https://doi.org/10.1121/1.1636851.CrossRefPubMedGoogle Scholar
  21. Nelson, B. S., & Stoddard, P. K. (1998). Accuracy of auditory distance and azimuth perception by a passerine bird in natural habitat. Animal Behaviour, 56(2), 467–477.  https://doi.org/10.1006/anbe.1998.0781.CrossRefPubMedGoogle Scholar
  22. Niimura, Y., & Nei, M. (2006). Evolutionary dynamics of olfactory and other chemosensory receptor genes in vertebrates. Journal of Human Genetics, 51(6), 505–517.  https://doi.org/10.1007/s10038-006-0391-8.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Ödeen, A., Håstad, O., & Alström, P. (2011). Evolution of ultraviolet vision in the largest avian radiation – The passerines. BMC Evolutionary Biology, 11(1), 313.  https://doi.org/10.1186/1471-2148-11-313.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Roura, E., Baldwin, M. W., & Klasing, K. C. (2013). The avian taste system: Potential implications in poultry nutrition. Animal Feed Science and Technology, 180(1–4), 1–9.  https://doi.org/10.1016/j.anifeedsci.2012.11.001.CrossRefGoogle Scholar
  25. Steiger, S. S., Fidler, A. E., Valcu, M., & Kempenaers, B. (2008). Avian olfactory receptor gene repertoires: Evidence for a well-developed sense of smell in birds? Proceedings of the Royal Society of London B: Biological Sciences, 275(1649), 2309–2317.CrossRefGoogle Scholar
  26. Werner, S. J., Kimball, B. A., & Provenza, F. D. (2008). Food color, flavor, and conditioned avoidance among red-winged blackbirds. Physiology & Behavior, 93(1–2), 110–117.  https://doi.org/10.1016/j.physbeh.2007.08.002.CrossRefGoogle Scholar
  27. Wild, J. M. (1990). Peripheral and central terminations of hypoglossal afferents innervating lingual tactile mechanoreceptor complexes in Fringillidae. Journal of Comparative Neurology, 298(2), 157–171.  https://doi.org/10.1002/cne.902980203.CrossRefPubMedGoogle Scholar
  28. Wiltschko, R., & Wiltschko, W. (2006). Magnetoreception. BioEssays, 28(2), 157–168.  https://doi.org/10.1002/bies.20363.CrossRefPubMedGoogle Scholar
  29. Wiltschko, R., Stapput, K., Thalau, P., & Wiltschko, W. (2010). Directional orientation of birds by the magnetic field under different light conditions. Journal of the Royal Society Interface, 7(Suppl 2), S163–S177.  https://doi.org/10.1098/rsif.2009.0367.focus.CrossRefGoogle Scholar
  30. Woolley, S. M. N., Wissman, A. M., & Rubel, E. W. (2001). Hair cell regeneration and recovery of auditory thresholds following aminoglycoside ototoxicity in Bengalese finches. Hearing Research, 153(1–2), 181–195.  https://doi.org/10.1016/S0378-5955(00)00217-3.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonCanada

Section editors and affiliations

  • Lauren Guillette
    • 1
  1. 1.University of St. AndrewsSt. AndrewsUK