Encyclopedia of Animal Cognition and Behavior

Living Edition
| Editors: Jennifer Vonk, Todd Shackelford

Algae

  • Suman YadavEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-47829-6_834-1

Definition

It is an assemblage of photosynthetic aquatic protists including seaweeds and other unicellular forms containing chlorophyll and lack stem roots and leaves.

Introduction

The algae are photosynthetic thallophytes (plant lacking root stem and leaves) having chlorophyll a as a primary photosynthetic pigment and lack a sterile covering of cells around the reproductive cells. Together with the other land plants, in aquatic ecosystem the algae by photosynthesis play major role in the global primery production. The algae are found in enormous range of habitats, more commonly occur in water both in fresh and marine, from snowfields to the hot spring and from damp earth and plant leaves to sun baked desert soil. Some endolithic algae colonize in the cracks of rocks. It can also occur on shores and coasts, attached to the bottom or live suspended in the water itself. Algae play a very important role in carbon cycle as it is primary producer and the environment has free oxygen due to...

This is a preview of subscription content, log in to check access.

References

  1. Andersen, R. A. (2004). Biology and systematic of heterokont and haptophyte algae. American Journal of Botany, 91, 1508–1522.CrossRefGoogle Scholar
  2. Anderson, R. A., & Mulkey, T. J. (1983). The occurrence of chlorophylls c1 and c2 in the Chrysophyceae. Journal of Phycology, 19, 289–294.CrossRefGoogle Scholar
  3. Bengtson, S., Belivanova, V., Rasmussen, B., & Whitehouse, M. (2009). The controversial “Cambrian” fossils of the Vindhyan are real but more than a billion years older. Proceedings of the National Academy of Sciences of the United States of America, 106(19), 7729–7734.CrossRefGoogle Scholar
  4. Cembella, A. D. (2003). Chemical ecology of eukaryotic microalgae in marine ecosystems. Phycologia, 42, 420–427.CrossRefGoogle Scholar
  5. Figueroa-Martinez, F., Nedelcu, A. M., Smith, D. R., & Reyes-Prieto, A. (2015). When the lights go out: The evolutionary fate of free-living colorless green algae. New Phytologist, 206(3), 972–982.CrossRefGoogle Scholar
  6. Fritsch, F. E. (1948). The structure and reproduction of Algae. Vol I and II. Cambridge, England: Cambridge University Press.Google Scholar
  7. Ghirardi, M. L., Zhang, L., Lee, J. W., et al. (2000). Microalgae: A green source of renewable H2. Trends in Biotechnology, 18, 506–511.CrossRefGoogle Scholar
  8. Gilbert, J. J. (1996). Effect of food availability on the response of planktonic rotifers to a toxic strain of the cyanobacterium Anabaena flos-aquae. Limnology and Oceanography, 41, 1565–1572.CrossRefGoogle Scholar
  9. Hallegraeff, G. M., Andersen, D. M., & Cembella, A. D. (2003). Manual on harmful marine Microalgae. Paris: UNESCO Publishing.Google Scholar
  10. Kars, G., Gunduz, U., Yucel, M., Turker, L., & Eroglu, I. (2006). Hydrogen production and transcriptional analysis of Nifd, Nifk and hups genes in Rhodobacter spaeroides O.U.001 grown in media with different concentration of molybdenum and iron. International Journal of Hydrogen Energy, 31, 1536–1544.CrossRefGoogle Scholar
  11. Karsten, U., Bischof, K., Hanelt, D., Tug, H., & Wiencke, C. (1999). The effect of ultraviolet radiation on photosynthesis and ultraviolet-absorbing substances in the endemic Arctic macroalgae Devuleraea ramentacea (Rhodophyta). Physiologia Plantarum, 105, 58–66.CrossRefGoogle Scholar
  12. Lee, R. E. (2008). Phycology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  13. Melis, A., Zhang, L., Forestier, M., Ghirardi, M. L., & Siebert, M. (2000). Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiology, 122, 127–136.CrossRefGoogle Scholar
  14. Moestrup, O. (1995). Current status of chrysophyte ‘splinter groups’: Synurophytes, pedinellids, silicoflagellates. In C. D. Sandgren, J. R. Smol, & J. Kristiansen (Eds.), Chrysophyte algae (pp. 75–91). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  15. Monteiro, C., Castro, P. L., & Malcata, F. X. (2010). Cadmium removal by two strains of Desmodesmus pleiomorphus cells. Water, Air, and Soil Pollution, 208(1e4), 17e27.Google Scholar
  16. Nabors, M. W. (2004). Introduction to botany. San Francisco: Pearson Education. ISBN 978-0-8053-4416-5.Google Scholar
  17. Pavia, H., Toth, G. B., Lindgren, A., & Aberg, P. (2003). Intraspecific variation in the phlorotannin content of the brown alga Ascophyllum nodosum. Phycologia, 42, 378–383.CrossRefGoogle Scholar
  18. Preisig, H. R. (1995). A modern concept of chrysophyte classification. In C. D. Sandgren, J. R. Smol, & J. Kristiansen (Eds.), Chrysophyte algae (pp. 46–74). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  19. Romera, E., Gonzalez, F., Ballester, A., Bl azquez, M. L., & Munoz, J. A. (2007). Comparative study of biosorption of heavy metals using different types of algae. Bioresource Technology, 98(17), 3344–3353.CrossRefGoogle Scholar
  20. Shimizu, Y. (2000). Chemistry and mechanism of action. In L. M. Botana (Ed.), Seafood and freshwater toxins: Pharmacology, physiology and detection (pp. 151–172). New York: Marcel Dekker.Google Scholar
  21. Smithsonian National Museum of Natural History; Department of Botany. Algae research. Archived from the original on 2 July 2010. Retrieved 25 Aug 2010.Google Scholar
  22. Sullivan, C. M., Entwisle, T. J., & Rowan, K. S. (1990). The identification of chlorophyll c in the Tribophyceae (Xanthophyceae) using spectrophotofluorometry. Phycologia, 29, 285–291.CrossRefGoogle Scholar
  23. Taylor, D. L. (1983). The coral-algal symbiosis. In L. J. Goff (Ed.), Algal symbiosis: A continuum of interaction strategies (pp. 19–20). Cambridge: Cambridge University Press. Archive.Google Scholar
  24. Williams, B. A., & Keeling, P. J. (2003). Cryptic organelles in parasitic protists and fungi. In D. T. J. Littlewood (Ed.), The evolution of parasitism (p. 46). London: Elsevier Academic Press.Google Scholar
  25. Wolfe, G. V. (2000). The chemical defense ecology of marine unicellular plankton: Constraints, mechanisms, and impacts. The Biological Bulletin, 198, 235–244.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Botany, Institute of ScienceBanaras Hindu UniversityVaranasiIndia

Section editors and affiliations

  • Mystera M. Samuelson
    • 1
  1. 1.The Institute for Marine Mammal StudiesGulfportUSA