Encyclopedia of Animal Cognition and Behavior

Living Edition
| Editors: Jennifer Vonk, Todd Shackelford

Arthropod Cognition

  • Cody A. Freas
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-47829-6_830-1



The perceiving, learning, and utilizing of information exhibited in the invertebrate animal phylum, Arthropoda.


Arthropods are a widely studied animal group, inspiring interest across a broad range of scientific disciplines due to the diversity of the environments they inhabit and their broad range of ecology. This group’s versatility has resulted in arthropods being the most successful animal group on the planet, with their membership including spiders, insects, and crustaceans. Arthropods are characterized as a group by their segmented bodies, appendages with joints, a hard external exoskeleton, and a lack of internal bone structures. To the layman, the behaviors of these “lower order” organisms might appear as inflexible or hardwired and reflect the appearance of only limited cognitive abilities when compared to the cognition of vertebrates. However, there exists a wealth...


Terrestrial Cues Dance Behavior Coordinated Body Movements Hive Mates Learning Flights 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Barr, S., Laming, P. R., Dick, J. T. A., & Elwood, R. W. (2008). Nociception or pain in a decapod crustacean? Animal Behaviour, 75(3), 745–751.CrossRefGoogle Scholar
  2. Battesti, M., Moreno, C., Joly, D., & Mery, F. (2012). Spread of social information and dynamics of social transmission within Drosophila groups. Current Biology, 22, 309–313.CrossRefPubMedGoogle Scholar
  3. Berni, J., Pulver, S. R., Griffith, L. C., & Bate, M. (2012). Autonomous circuitry for substrate exploration in freely moving Drosophila larvae. Current Biology, 22, 1861–1870.CrossRefPubMedCentralPubMedGoogle Scholar
  4. Beugnon, G., Lachaud, J. P., & Chagné, P. (2005). Use of long-term stored vector information in the neotropical ant Gigantiops destructor. Journal of Insect Behavior, 18, 415–432.CrossRefGoogle Scholar
  5. Busto, G. U., Cervantes-Sandoval, I., & Davis, R. L. (2010). Olfactory learning in Drosophila. Physiology, 25(6), 338–346.CrossRefPubMedCentralPubMedGoogle Scholar
  6. Cheng, K. (2018). Cognition beyond representation: Varieties of situated cognition in animals. Comparative Cognition & Behavior Reviews. (In Press).Google Scholar
  7. Collett, M. (2010). How desert ants use a visual landmark for guidance along a habitual route. Proceedings of the National Academy of Sciences USA, 107, 11638–11643.CrossRefGoogle Scholar
  8. D’Ettorre, P., & Heinze, J. (2005). Individual recognition in ant queens. Current Biology, 15, 2170–2174.CrossRefPubMedGoogle Scholar
  9. Elwood, R. W., & Appel, M. (2009). Pain experience in hermit crabs? Animal Behaviour, 77(5), 1243–1246.CrossRefGoogle Scholar
  10. Freas, C. A., Narendra, A., Lemesle, C., & Cheng, K. (2017). Polarized light use in the nocturnal bull ant, Myrmecia midas. Royal Society Open Science, 4(8), 170598.CrossRefPubMedCentralPubMedGoogle Scholar
  11. Giurfa, M. (2015). Learning and cognition in insects. WIREs Cognitive Science, 6, 383–395.CrossRefPubMedGoogle Scholar
  12. Giurfa, M., & Sandoz, J. C. (2012). Invertebrate learning and memory: Fifty years of olfactory conditioning of the proboscis extension response in honeybees. Learning and Memory, 19, 54–66.CrossRefPubMedGoogle Scholar
  13. Grüter, C., & Farina, W. M. (2009). The honeybee waggle dance: Can we follow the steps? Trends in Ecology & Evolution, 24(5), 242–247.CrossRefGoogle Scholar
  14. Japyassú, H. F., & Laland, K. N. (2017). Extended spider cognition. Animal Cognition, 20, 375–395.CrossRefPubMedCentralPubMedGoogle Scholar
  15. Loukola, O. J., Perry, C. J., Coscos, L., & Chittka, L. (2017). Bumblebees show cognitive flexibility by improving on an observed complex behavior. Science, 355(6327), 833–836.CrossRefPubMedGoogle Scholar
  16. Magee, B., & Elwood, R. W. (2013). Shock avoidance by discrimination learning in the shore crab (Carcinus maenas) is consistent with a key criterion for pain. Journal of Experimental Biology, 216(3), 353–358.CrossRefPubMedGoogle Scholar
  17. Menzel, R. (1999). Memory dynamics in the honeybee. Journal of Comparative Physiology A, 185(4), 323–340.CrossRefGoogle Scholar
  18. Mery, F., Varela, S. A. M., Danchin, E., Blanchet, S., Parejo, D., Coolen, I., & Wagner, R. H. (2009). Public versus personal information for mate copying in an invertebrate. Current Biology, 19, 730–734.CrossRefPubMedGoogle Scholar
  19. Narendra, A. (2007). Homing strategies of the Australian desert ant Melophorus bagoti II. Interaction of the path integrator with visual cue information. Journal of Experimental Biology, 210(10), 1804–1812.CrossRefPubMedGoogle Scholar
  20. Ortega-Escobar, J. (2006). Role of the anterior lateral eyes of the wolf spider Lycosa tarantula (Araneae, Lycosidae) during path integration. Journal of Arachnology, 34, 51–61.CrossRefGoogle Scholar
  21. Peckmezian, T., & Taylor, P. W. (2016). Place avoidance learning and memory in a jumping spider. Animal Cognition, 20(2), 275–284.CrossRefPubMedGoogle Scholar
  22. Putz, G. (2002). Memories in Drosophila heat-box learning. Learning & Memory, 9(5), 349–359.CrossRefGoogle Scholar
  23. Sheehan, M. J., & Tibbetts, E. A. (2011). Specialized face learning is associated with individual recognition in paper wasps. Science, 334, 1272–1275.CrossRefPubMedGoogle Scholar
  24. Tully, T., & Quinn, W. G. (1985). Classical conditioning and retention in normal and mutant Drosophila melanogaster. Journal of Comparative and Physiological Psychology, 156, 263–277.CrossRefGoogle Scholar
  25. von Frisch, K. (1914). Der Farbensinn und Formensinn der Biene. Zoologische Jahrbücher. Abteilung für allgemeine Zoologie und Physiologie der Tiere, 37, 1–238.Google Scholar
  26. von Frisch, K. (1967). The dance language and orientation of bees. Cambridge, MA: Harvard University Press.Google Scholar
  27. Watanabe, H., & Mizunami, M. (2007). Pavlov’s cockroach: Classical conditioning of salivation in an insect. PLoS One, 2, e529.CrossRefPubMedCentralPubMedGoogle Scholar
  28. Wehner, R., & Wehner, S. (1990). Insect navigation: Use of maps or Ariadne’s thread. Ethology Ecology and Evolution, 2, 27–48.CrossRefGoogle Scholar
  29. Zeil, J., & Layne, J. (2002). Path integration in fiddler crabs and its relation to habitat and social life. In K. Wiese (Ed.), Crustacean experimental systems in neurobiology. Heidelberg/Berlin/New York: Springer.Google Scholar
  30. Zeil, J., Narendra, A., & Sturzl, W. (2014). Looking and homing: How displaced ants decide where to go. Proceedings of the Royal Society B, 369, 20130034.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Cody A. Freas
    • 1
  1. 1.Department of Biological SciencesMacquarie UniversitySydneyAustralia

Section editors and affiliations

  • Joseph Boomer
    • 1
  1. 1.University at BuffaloBuffaloUSA