Encyclopedia of Animal Cognition and Behavior

Living Edition
| Editors: Jennifer Vonk, Todd Shackelford

Reversal Learning

  • Rebecca Rayburn-ReevesEmail author
  • Mary Kate Moore
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-47829-6_800-1


Reversal learning has been a widely used procedural paradigm in the field of animal behavior and comparative cognition since its inception in the early twentieth century (Williams 1942). This is, in part, due to reversal learning’s relatively simple procedural design, which allows it to be implemented in almost any context, using a variety of apparatuses, and with a potentially limitless array of stimuli. In terms of its efficacy as a research tool, it can be used to measure differences, both within and across species, in the “…adaptation of behavior according to changes in stimulus–reward contingencies” (Clark et al. 2004). This type of overt behavioral change that is evoked by environmental feedback is called behavioral flexibility, which appears to be closely tied to, or an outward expression of, internal levels of cognitive flexibility (Gonzalez et al. 1966). Cognitive flexibility is the ability to shift attention to relevant discriminative stimuli, depending on their...

This is a preview of subscription content, log in to check access.


  1. Behrend, E. R., Domesick, V. B., & Bitterman, M. E. (1965). Habit reversal in the fish. Journal of Comparative and Physiological Psychology, 60(3), 407–411.  https://doi.org/10.1037/h0022566.CrossRefPubMedGoogle Scholar
  2. Bitterman, M. E. (1965). Phyletic differences in learning. American Psychologist, 20(6), 396–410.  https://doi.org/10.1037/h0022328.CrossRefPubMedGoogle Scholar
  3. Bourke, W. T. (1954). The effects of frontal lobe damage upon habit reversal in the white rat. Journal of Comparative and Physiological Psychology, 47(4), 277–282.  https://doi.org/10.1037/h0060286.CrossRefPubMedGoogle Scholar
  4. Clark, L., Cools, R., & Robbins, T. (2004). The neuropsychology of ventral prefrontal cortex: Decision-making and reversal learning. Brain and Cognition, 55, 41–53.  https://doi.org/10.1016/S0278-2626(03)00284-7. (Development of Orbitofrontal Function).CrossRefPubMedGoogle Scholar
  5. Cook, R. G. & Rosen, H. A. (2010). Temporal control of internal states in pigeons. Psychonomic Bulletin & Review, 17, 915–922.CrossRefGoogle Scholar
  6. Costa, V. D., Tran, V. L., Turchi, J., & Averbeck, B. B. (2015). Reversal learning and dopamine: A Bayesian perspective. The Journal of Neuroscience, 35(6), 2407–2416.  https://doi.org/10.1523/JNEUROSCI.1989-14.2015.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Dargis, M., Wolf, R. C., & Koenigs, M. (2017). Reversal learning deficits in criminal offenders: Effects of psychopathy, substance use, and childhood maltreatment history. Journal of Psychopathology and Behavioral Assessment, 39(2), 189–197.  https://doi.org/10.1007/s10862-016-9574-6.CrossRefPubMedGoogle Scholar
  8. den Ouden, H. E., Daw, N. D., Fernandez, G., Elshout, J. A., Rijpkema, M., Hoogman, M., Franke, B., & Cools, R. (2013). Dissociable effects of dopamine and serotonin on reversal learning. Neuron, 80(4), 1090–1100.  https://doi.org/10.1016/j.neuron.2013.08.030.CrossRefGoogle Scholar
  9. Dufort, R. H., Guttman, N., & Kimble, G. A. (1954). One-trial discrimination reversal in the white rat. Journal of Comparative and Physiological Psychology, 47(3), 248–249.  https://doi.org/10.1037/h0057856.CrossRefPubMedGoogle Scholar
  10. Fellows, L. K., & Farah, M. J. (2003). Ventromedial frontal cortex mediates affective shifting in humans: Evidence from a reversal learning paradigm. Brain, 126(8), 1830–1837. Retrieved from:  https://doi.org/10.1093/brain/awg180.CrossRefGoogle Scholar
  11. Gonzalez, R. C., & Bitterman, M. E. (1968). Two-dimensional discriminative learning in the pigeon. Journal of Comparative and Physiological Psychology, 65, 427–432.CrossRefGoogle Scholar
  12. Gonzalez, R., Berger, B., & Bitterman, M. E. (1966). Improvement in habit-reversal as a function of amount of training per reversal and other variables. The American Journal of Psychology, 79(4), 517.  https://doi.org/10.2307/1421287.CrossRefGoogle Scholar
  13. Grandy, D. K., & Kruzich, P. J. (2004). Dopamine D2 receptors mediate two-odor discrimination and reversal learning in C57BL/6 mice. BMC Neuroscience, 5, 12.  https://doi.org/10.1186/1471-2202-5-12.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hampshire, A., Chaudhry, A. M., Owen, A. M., & Roberts, A. C. (2012). Dissociable roles for lateral orbitofrontal cortex and lateral prefrontal cortex during preference driven reversal learning. NeuroImage, 59(4), 4102–4112.  https://doi.org/10.1016/j.neuroimage.2011.10.072.CrossRefPubMedGoogle Scholar
  15. Harlow, H. F. (1949). The formation of learning sets. Psychological Review, 56, 51–65.CrossRefGoogle Scholar
  16. Izquierdo, A., & Jentsch, J. (2012). Reversal learning as a measure of impulsive and compulsive behavior in addictions. Psychopharmacology, 219(2), 607–620.  https://doi.org/10.1007/s00213-011-2579-7.CrossRefPubMedGoogle Scholar
  17. Kovalchik, S., & Allman, J. (2006). Measuring reversal learning: Introducing the Variable Iowa Gambling Task in a study of young and old normals. Cognition and Emotion, 20(5), 714–728.  https://doi.org/10.1080/02699930500371166.CrossRefGoogle Scholar
  18. Krechevsky, I. (1932b). “Hypotheses” versus “chance” in the pre-solution period in sensory discrimination-learning. University of California Publications in Psychology, 6(3), 27–44.Google Scholar
  19. Laude, J. R., Stagner, J. P., Rayburn-Reeves, R. M., & Zentall, T. R. (2014). Midsession reversals with pigeons: Visual versus spatial discriminations and the intertrial interval. Learning and Behavior, 42(1), 40–46.  https://doi.org/10.3758/s13420-013-0122-x.CrossRefPubMedGoogle Scholar
  20. Laude, J. R., Pattison, K. F., Rayburn-Reeves, R. M., Michler, D. M., & Zentall, T. R. (2016). Who are the real bird brains? Qualitative differences in behavioral flexibility between dogs (Canis familiaris) and pigeons (Columba livia). Animal Cognition, 19(1), 163–169.CrossRefGoogle Scholar
  21. Levine M. (1975). A Cognitive Theory of Learning: Research on Hypothesis Testing. Vol xii. Oxford, UK: Lawrence Erlbaum.Google Scholar
  22. Lionello-Denolf, K. M. (2013). Rapid cue reversal learning. Encyclopedia of Autism Spectrum Disorders, 2491–2496.  https://doi.org/10.1007/978-1-4419-1698-3_133.
  23. Lovejoy, E. (1965). An attention theory of discrimination learning. Journal of Mathematical Psychology, 2(2), 342–362.CrossRefGoogle Scholar
  24. Mackintosh, N. J. (1963). The effect of irrelevant cues on reversal learning in the rat. British Journal of Psychology, 54(2), 127.  https://doi.org/10.1111/j.2044-8295.1963.tb00868.CrossRefGoogle Scholar
  25. Mackintosh, N. J. (1975). A theory of attention: variations in the associability of stimuli with reinforcement. Psychological Review, 82(4), 276–298.  https://doi.org/10.1037/h0076778.CrossRefGoogle Scholar
  26. Mackintosh, N. J., & Holgate, V. (1969). Serial reversal training and nonreversal shift learning. Journal of Comparative and Physiological Psychology, 67(1), 89–93.  https://doi.org/10.1037/h0026661.CrossRefPubMedGoogle Scholar
  27. Mackintosh, N. J., McGonigle, B., & Holgate, V. (1968). Factors underlying improvement in serial reversal learning. Canadian Journal of Psychology, 22(2), 85–95.  https://doi.org/10.1037/h0082753.CrossRefPubMedGoogle Scholar
  28. McMillan, N., Kirk, C. R., & Roberts, W. A. (2014). Pigeon (Columba livia) and rat (Rattus norvegicus) performance in the midsession reversal procedure depends upon cue dimensionality. Journal of Comparative Psychology, 128, 357–366.CrossRefGoogle Scholar
  29. Murray, G. K., Cheng, F., Clark, L., Barnett, J. H., Blackwell, A. D., Fletcher, P. C., et al (2008). Reinforcement and reversal learning in first-episode psychosis. Schizophrenia Bulletin, 34(5), 848–855.  https://doi.org/10.1093/schbul/sbn078.CrossRefGoogle Scholar
  30. Rayburn-Reeves, R., & Cook, R. (2016). The organization of behavior over time: insights from midsession reversal. Comparative Cognition & Behavior Reviews, 11, 103–125.  https://doi.org/10.3819/ccbr.2016.110006.CrossRefGoogle Scholar
  31. Rayburn-Reeves, R. M., Molet, M., & Zentall, T. R. (2011). Simultaneous discrimination reversal learning in pigeons and humans: Anticipatory and perseverative errors. Learning & Behavior, 39(2), 125–137.CrossRefGoogle Scholar
  32. Rayburn-Reeves, R., Stagner, J., Kirk, C., & Zentall, T. (2013). Reversal learning in rats (rattus norvegicus) and pigeons (Columba livia): Qualitative differences in behavioral flexibility. Journal of Comparative Psychology, 127(2), 202–211.CrossRefGoogle Scholar
  33. Rayburn-Reeves R. M., Qadri M. A., Brooks D. I., Keller A. M., & Cook R. G. (2016). Dynamic cue use in pigeon mid-session reversal. Behav Processes, 137, 53–63.  https://doi.org/10.1016/j.beproc.2016.09.002.CrossRefGoogle Scholar
  34. Rayburn-Reeves R. M., James B. T., & Beran M. J. (2017). Within-session reversal learning in rhesus macaques (Macaca mulatta). Anim Cogn, 20(5), 975–983.  https://doi.org/10.1007/s10071-017-1117-3.CrossRefGoogle Scholar
  35. Reid, L. S. (1953). The development of noncontinuity behavior through continuity learning. Journal of Experimental Psychology, 46(2), 107–112.CrossRefGoogle Scholar
  36. Schade, A. F., & Bitterman, M. E. (1966). Improvement in habit reversal as related to dimensional set. Journal of Comparative and Physiological Psychology, 62(1), 43–48.CrossRefGoogle Scholar
  37. Schrier, A. M. (1984). Learning how to learn: The significance and current status of learning set formation. Primates, 25, 95–102.CrossRefGoogle Scholar
  38. Sidman, M. E. (1960; 1988). Tactics of Scientific Research: Evaluating Experimental Data in Psychology. Authors Cooperative, Inc. Boston, MA.Google Scholar
  39. Smith, A. P., Pattison, K. P., & Zentall, T. R. (2016). Rats’ midsession reversal performance: the nature of the response. Learn Behav, 44(1), 49–58.  https://doi.org/10.3758/s13420-015-0189-7.CrossRefGoogle Scholar
  40. Sutherland, N., & Mackintosh, M. (1971). Mechanisms of animal discrimination learning. The American Journal of Psychology, 2, 301.  https://doi.org/10.2307/1420674.CrossRefGoogle Scholar
  41. Warren, J. M. (1964). Additivity of cues in conditional discrimination learning by rhesus monkeys. Journal of Comparative and Physiological Psychology, 58(1), 124–126.  https://doi.org/10.1037/h0047425.CrossRefPubMedGoogle Scholar
  42. Williams, S. B. (1942). Reversal learning after two degrees of training. Journal of Comparative Psychology, 34(3), 353–360.  https://doi.org/10.1037/h0061658.CrossRefGoogle Scholar
  43. Xue, G., Xue, F., Droutman, V., Lu, Z., Bechara, A., & Reed, S. (2013). Common neural mechanisms underlying reversal learning by reward and punishment. PLoS One, 8I(12), e82169.  https://doi.org/10.1371/journal.pone.0082169.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Georgia Southern University – Armstrong CampusSavannahUSA
  2. 2.Department of PsychologyArmstrong State UniversitySavannahUSA

Section editors and affiliations

  • Kenneth Leising
    • 1
  1. 1.Texas Christian UniversityForth WorthUSA