Encyclopedia of Animal Cognition and Behavior

Living Edition
| Editors: Jennifer Vonk, Todd Shackelford


  • Paul A. StevensonEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-47829-6_726-1



Conspecific aggression is an offensive behavioral strategy directed towards a competing member of the same species that is adapted to secure some resource at minimal cost.


Aggression, from the Latin aggressiofor attack, is frequently used synonymously for agonistic behavior which include threats, displays, retreats, placation, and conciliation. Psychologists define aggression as a behavior intended to harm another individual, which is less fitting for animals as they need not act with intent. Furthermore, while aggression is symptomatic for numerous psychiatric disorders, it is not necessarily an aberrant behavior, and it is considered to be adaptive for evolution and survival of animals and humans alike. Even so, there are still differing schools of thought on the origin and cause of human aggression...

This is a preview of subscription content, log in to check access.


  1. Adamo, S. A., Linn, C. E., & Hoy, R. R. (1995). The role of neurohormonal octopamine during ‘fight or flight’ behaviour in the field cricket Gryllus bimaculatus. Journal of Experimental Biology, 198, 1691–1700.PubMedGoogle Scholar
  2. Andrews, J. C., Fernandez, M. P., Yu, Q., Leary, G. P., Leung, A. K., Kavanaugh, M. P., Kravitz, E. A., & Certel, S. J. (2014). Octopamine neuromodulation regulates Gr32a-linked aggression and courtship pathways in Drosophila males. PLoS Genetics, 10, e1004356.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Anholt, R. R., & Mackay, T. F. (2012). Genetics of aggression. Annual Review of Genetics, 46, 145.CrossRefPubMedGoogle Scholar
  4. Arnott, G., & Elwood, R. W. (2009). Assessment of fighting ability in animal contests. Animal Behaviour, 77, 991–1004.CrossRefGoogle Scholar
  5. Asahina, A. (2017). Neuromodulation and strategic action choice in Drosophila aggression. Annual Review of Neuroscience, 40, 51–75.CrossRefPubMedGoogle Scholar
  6. Bedrosian, T. A., & Nelson, R. J. (2014). Nitric oxide and serotonin interactions in aggression. Curent Topics in Behavioural Neuroscience, 17, 131–142.CrossRefGoogle Scholar
  7. Briffa, M., & Sneddon, L. U. (2016). Proximate mechanisms of animal personality among-individual behavioural variation in animals. Behaviour, 153, 1509–1515.CrossRefGoogle Scholar
  8. Bushman, B. J., & O’Brien, E. H. (2017). Aggression. In Reference module in neuroscience and biobehavioral psychology. Elsevier, Amsterdam.Google Scholar
  9. Caldwell, H. K. (2017). Oxytocin and vasopressin: Powerful regulators of social behavior. The Neuroscientist, 23, 517–528.CrossRefGoogle Scholar
  10. Challis, C., Boulden, J., Veerakumar, A., Espallergues, J., Vassoler, F. M., Pierce, R. C., Beck, S. G., & Berton, O. (2013). Raphe GABAergic neurons mediate the acquisition of avoidance after social defeat. Journal of Neuroscience, 33, 13978–13988.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dawkins, R. (1976). The selfish gene. Oxford: Oxford University Press.Google Scholar
  12. de Boer, S. F., & Koolhaas, J. M. (2017). The neurobiology of offensive aggression. In Reference module in neuroscience and biobehavioral psychology. Elsevier, Amsterdam.Google Scholar
  13. de Boer, S. F., Buwalda, B., & Koolhaas, J. M. (2016). Aggressive behavior and social stress. In G. Fink (Ed.), Stress: Concepts, cognition, emotion, and behavior (pp. 293–303). Burlington: Academic.Google Scholar
  14. Falkner, A. L., Grosenick, L., Davidson, T. J., Deisseroth, K., & Lin, D. (2016). Hypothalamic control of male aggression-seeking behavior. Nature Neuroscience, 19, 596–604.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Fuxjager, M. J., Forbes-Lorman, R. M., Coss, D. J., Auger, C. J., Auger, A. P., & Marler, C. A. (2010). Winning territorial disputes selectively enhances androgen sensitivity in neural pathways related to motivation and social aggression. Proceedings of the National Academy of Sciences, USA, 107, 12393–12398.CrossRefGoogle Scholar
  16. Hammels, C., Pishva, E., De Vry, J., van den Hove, D. L., Prickaerts, J., van Winkel, R., Selten, J. P., Lesch, K. P., Daskalakis, N. P., Steinbusch, H. W., van Os, J., Kenis, G., & Rutten, B. P. (2015). Defeat stress in rodents: From behavior to molecules. Neuroscience and Biobehavioral Reviews, 59, 111–140.CrossRefPubMedGoogle Scholar
  17. Hoopfer, E. D. (2016). Neural control of aggression in Drosophila. Current Opinion in Neurobiology, 38, 109–118.CrossRefPubMedGoogle Scholar
  18. Hsu, Y., Earley, R. L., & Wolf, L. L. (2006). Modulation of aggressive behaviour by fighting experience: Mechanisms and contest outcomes. Biological Reviews of the Cambridge Philosophical Society, 81, 33–74.CrossRefPubMedGoogle Scholar
  19. Huber, R. (2005). Amines and motivated behaviors: A simpler systems approach to complex behavioral phenomena. Journal of Comparative Physiology. A, 191, 231–239.CrossRefGoogle Scholar
  20. Johnson, O., Becnel, J., & Nichols, C. D. (2009). Serotonin 5-HT(2) and 5-HT(1A)-like receptors differentially modulate aggressive behaviors in Drosophila melanogaster. Neuroscience, 158, 1292–1300.CrossRefPubMedGoogle Scholar
  21. Maynard Smith, J., & Price, G. R. (1973). The logic of animal conflict. Nature, 246, 15–18.CrossRefGoogle Scholar
  22. Morrison, T. R., & Melloni, R. H., Jr. (2014). The role of serotonin, vasopressin, and serotonin/vasopressin interactions in aggressive behavior. Current Topics in Behavioral Neurosciences, 17, 189–228.CrossRefPubMedGoogle Scholar
  23. Nelson, R. J., & Trainor, B. C. (2007). Neural mechanisms of aggression. Nature Reviews. Neuroscience, 8, 536–546.CrossRefPubMedGoogle Scholar
  24. Oliveira, R. F., Silva, A., & Canario, A. V. M. (2009). Why do winners keep winning? Androgen mediation of winner but not loser effects in cichlid fish. Proceedings of the Royal Society London B, 276, 2249–2256.CrossRefGoogle Scholar
  25. Olivier, B. (2015). Serotonin: A never-ending story. European Journal of Pharmacology, 753, 2–18.CrossRefPubMedGoogle Scholar
  26. Polderman, T. J., Benyamin, B., de Leeuw, C. A., Sullivan, P. F., van Bochoven, A., Visscher, P. M., & Posthuma, D. (2015). Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nature Genetics, 47, 702–709.CrossRefPubMedGoogle Scholar
  27. Rillich, J., & Stevenson, P. A. (2015). Releasing stimuli and aggression in crickets: Octopamine promotes escalation and maintenance but not initiation. Frontiers in Behavioral Neuroscience, 9, 95.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Rillich, J., & Stevenson, P. A. (2017). Losing without fighting – Simple aversive stimulation induces submissiveness typical for social defeat via the action of nitric oxide, but only when preceded by an aggression priming stimulus. Frontiers in Behavioral Neuroscience, 11, 50.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Rillich, J., Schildberger, K., & Stevenson, P. A. (2007). Assessment strategy of fighting crickets revealed by manipulating information exchange. Animal Behaviour, 74, 823–836.CrossRefGoogle Scholar
  30. Rose, J., Cullen, D. A., Simpson, S. J., & Stevenson, P. A. (2017). Born to win or bred to lose: Aggressive and submissive behavioural profiles in crickets. Animal Behaviour, 123, 441–450.CrossRefGoogle Scholar
  31. Stevenson, P. A., & Rillich, J. (2013). Isolation associated aggression – A consequence of recovery from defeat in a territorial animal. PLoS One, 8, e74965.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Stevenson, P. A., & Rillich, J. (2015). Adding up the odds – Nitric oxide signaling underlies the decision to flee and post-conflict depression of aggression. Science Advances, 1, e1500060.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Stevenson, P. A., & Rillich, J. (2016). Controlling the decision to fight or flee: The roles of biogenic amines and nitric oxide in the cricket. Current Zoology, 62, 265–275.CrossRefGoogle Scholar
  34. Thomas, A. L., Davis, S. M., & Dierick, H. A. (2015). Of fighting flies, mice, and men: Are some of the molecular and neuronal mechanisms of aggression universal in the animal kingdom? PLoS Genetics, 11, e1005416.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Trannoy, S., & Kravitz, E. A. (2017). Strategy changes in subsequent fights as consequences of winning and losing in fruit fly fights. Fly (Austin), 11, 129–138.CrossRefGoogle Scholar
  36. Watanabe, K., Chiu, H., Pfeiffer, B. D., Wong, A. M., Hoopfer, E. D., Rubin, G. M., & Anderson, D. J. (2017). A circuit node that integrates convergent input from neuromodulatory and social behavior-promoting neurons to control aggression in Drosophila. Neuron, 95, 1112–1128.CrossRefPubMedGoogle Scholar
  37. Yu, W. C., Liu, C. Y., & Lai, W. S. (2016). Repeated, intermittent social defeat across the entire juvenile period resulted in behavioral, physiological, hormonal, immunological, and neurochemical alterations in young adult male golden hamsters. Frontiers in Behavioral Neuroscience, 10, 110.PubMedPubMedCentralGoogle Scholar
  38. Yuan, Q., Song, Y., Yang, C. H., Jan, L. Y., & Jan, Y. N. (2014). Female contact modulates male aggression via a sexually dimorphic GABAergic circuit in Drosophila. Nature Neuroscience, 17, 81–88.CrossRefPubMedGoogle Scholar
  39. Zwarts, L., Versteven, M., & Callaerts, P. (2012). Genetics and neurobiology of aggression in Drosophila. Fly (Austin), 6, 35–48.CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Faculty for Life Sciences, Institute for BiologyUniversity of LeipzigLeipzigGermany

Section editors and affiliations

  • Caroline Leuchtenberger
    • 1
  1. 1.Federal Institute FarroupilhaPanambiBrasil