Encyclopedia of Animal Cognition and Behavior

Living Edition
| Editors: Jennifer Vonk, Todd Shackelford

Animal Models

Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-47829-6_2059-1


In the neurosciences, animal models play a central role for experimentally investigating neurobehavioral (dys)functions and their underlying (patho)physiological mechanisms and processes. Almost always, when using animal models, one implicitly assumes that they simulate these mechanisms and processes in humans or a species other than the one investigated. These animal models thus focus on the homology/analogy of the behavior and underlying substrates with the final aim to learn about these behaviors and substrates in the species to be modeled. When developing a model or when selecting the most appropriate animal model for a research project, the most important selection criterion is its validity. Validity is the extent to which an animal model’s underlying substrates and mechanisms, measurements, and the conclusions drawn from these measurements are well-grounded and represent the real world accurately.

The basic classes of validity, i.e., internal and external validity...

This is a preview of subscription content, log in to check access.


  1. Atanasova, N. A. (2015). Validating animal models. Theoria, 30(2), 163–181.  https://doi.org/10.1387/theoria.12761.CrossRefGoogle Scholar
  2. Belzung, C. (2014). Innovative drugs to treat depression: Did animal models fail to be predictive or did clinical trials fail to detect effects? Neuropsychopharmacology Reviews, 39(5), 1–10.  https://doi.org/10.1038/npp.2013.342.CrossRefGoogle Scholar
  3. Belzung, C., & Lemoine, M. (2011). Criteria of validity for animal models of psychiatric disorders: Focus on anxiety disorders and depression. Biology of Mood & Anxiety Disorders, 1(9), 14.  https://doi.org/10.1186/2045-5380-1-9.CrossRefGoogle Scholar
  4. Burrows, E. L., McOmish, C. E., & Hannan, A. J. (2011). Gene–environment interactions and construct validity in preclinical models of psychiatric disorders. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 35(6), 1376–1382.  https://doi.org/10.1016/j.pnpbp.2010.12.011.CrossRefGoogle Scholar
  5. Cachat, J., Stewart, A., Utterback, E., Hart, P., Gaikwad, S., Wong, K., … Kalueff, A. V. (2011). Three-dimensional neurophenotyping of adult zebrafish behavior. PLoS One 6(3), e17597, 14.  https://doi.org/10.1371/journal.pone.0017597.CrossRefGoogle Scholar
  6. Crabbe, J. C., & Morris, R. G. M. (2004). Festina lente: Late-night thoughts on high-throughput screening of mouse behavior. Nature Neuroscience, 7(11), 1175–1179.  https://doi.org/10.1038/nn1343.CrossRefPubMedGoogle Scholar
  7. Cuthbert, B. N. (2014). The RDoC framework: Facilitating transition from ICD/DSM to dimensional approaches that integrate neuroscience and psychopathology. World Psychiatry, 13(1), 18–35.  https://doi.org/10.1002/wps.20087.CrossRefGoogle Scholar
  8. Degeling, C., & Johnson, J. (2013). Evaluating animal models: Some taxonomic worries. Journal of Medicine and Philosophy, 38, 91–106.  https://doi.org/10.1093/jmp/jht004.CrossRefPubMedGoogle Scholar
  9. Denayer, T., Stöhr, T., & van Roy, M. (2014). Animal models in translational medicine: Validation and prediction. New Horizons in Translational Medicine, 2.  https://doi.org/10.1016/j.nhtm.2014.08.001.CrossRefGoogle Scholar
  10. Ferreira, G. S., Veening-Griffioen, D. H., Boon, W. P. C., Moors, E. H. M., Gispen-de Wied, C. C., Schellekens, H., & van Meer, P. J. K. (2019). A standardised framework to identify optimal animal models for efficacy assessment in drug development. PLoS One, 14(6), e0218014, 17.  https://doi.org/10.1371/journal.pone.0218014.CrossRefGoogle Scholar
  11. Gamzu, E. (1985). Animal behavioral models in the discovery of compounds to treat memory dysfunction. Annals of the New York Academy of Sciences, 444, 370–393.  https://doi.org/10.1111/j.1749-6632.1985.tb37602.x.CrossRefPubMedGoogle Scholar
  12. Gould, T. D., & Gottesman, I. I. (2006). Psychiatric endophenotypes and the development of valid animal models. Genes, Brain and Behavior, 5(2), 113–119.  https://doi.org/10.1111/j.1601-183X.2005.00186.x.CrossRefGoogle Scholar
  13. Gouveia, A., Jr., & de Brito, T. M. (2015). Animal models of psychopathology and its relation to clinical practice. In P. A. Gargiulo & H. L. M. Arroyo (Eds.), Psychiatry and neuroscience update.  https://doi.org/10.1007/978-3-319-17103-6_22.CrossRefGoogle Scholar
  14. Greek, R., & Rice, M. J. (2012). Animal models and conserved processes. Theoretical Biology and Medical Modelling 9, 40, 33.  https://doi.org/10.1186/1742-4682-9-40.
  15. Guala, F. (2003). Experimental localism and external validity. Philosophy of Science, 70, 1195–1205.  https://doi.org/10.1086/377400.CrossRefGoogle Scholar
  16. Hoffman, K. L. (2016). New dimensions in the use of rodent behavioral tests for novel drug discovery and development. Expert Opinion on Drug Discovery, 11(4), 343–353.  https://doi.org/10.1517/17460441.2016.1153624.CrossRefPubMedGoogle Scholar
  17. Kas, M. J. H., Fernandes, C., Schalkwyk, L. C., & Collier, D. A. (2007). Genetics of behavioural domains across the neuropsychiatric spectrum; of mice and men. Molecular Psychiatry, 12, 324–330.  https://doi.org/10.1038/sj.mp.4001979.CrossRefPubMedGoogle Scholar
  18. Kas, M. J. H., Gelegen, C., Schalkwyk, L. C., & Collier, D. A. (2009). Interspecies comparisons of functional genetic variations and their implications in neuropsychiatry. American Journal of Medical Genetics – Part B, 150B, 309–317.  https://doi.org/10.1002/ajmg.b.30815.CrossRefGoogle Scholar
  19. Kas, M. J. H., Krishnan, V., Gould, T. D., Collier, D. A., Olivier, B., Lesch, K.-P., et al. (2011). Advances in multidisciplinary and cross-species approaches to examine the neurobiology of psychiatric disorders. European Neuropsychopharmacology, 21, 532–544.  https://doi.org/10.1016/j.euroneuro.2010.12.001.CrossRefPubMedGoogle Scholar
  20. LaPorte, J. L., Ren-Patterson, R. F., Murphy, D. L., & Kalueff, A. V. (2008). Refining psychiatric genetics: From ‘mouse psychiatry’ to understanding complex human disorders. Behavioural Pharmacology, 19, 377–384.  https://doi.org/10.1097/FBP.0b013e32830dc09b.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Maximino, C., & van der Staay, F. J. (2019). Behavioral models in psychopathology: Epistemic and semantic considerations. Behavioral and Brain Functions 15, 1, 11.  https://doi.org/10.1186/s12993-019-0152-4.
  22. Maximino, C., Marques de Brito, T., & Gouveia, A., Jr. (2010). Construct validity of behavioral models of anxiety: Where experimental psychopathology meets ecology and evolution. Psychology & Neuroscience, 3(1), 117–123.  https://doi.org/10.3922/j.psns.2010.1.015.CrossRefGoogle Scholar
  23. Maximino, C., da Silva, A. W. B., Araújo, J., Gomes Lima, M., Miranda, V., Puty, B., … Herculano, A. M. (2014). Fingerprinting of psychoactive drugs in zebrafish anxiety-like behaviors. PLoS One 9(7), e103943, 8.  https://doi.org/10.1371/journal.pone.0103943.CrossRefGoogle Scholar
  24. McKinney, W. T., Jr., & Bunney, W. E., Jr. (1969). Animal model of depression, I. Review of evidence: Implications for research. Archives of General Psychiatry, 21, 240–248.  https://doi.org/10.1016/B978-0-08-023725-1.50013-6.CrossRefPubMedGoogle Scholar
  25. McNaughton, N., & Zangrossi, H., Jr. (2008). Theoretical approaches to the modeling of anxiety in animals. In R. J. Blanchard, D. C. Blanchard, G. Griebel, & D. Nutt (Eds.), Handbook of anxiety and fear (Vol. 17, pp. 11–27).  https://doi.org/10.1016/S1569-7339(07)00002-1.CrossRefGoogle Scholar
  26. McOmish, C. E., Burrows, E. L., & Hannan, A. J. (2014). Identifying novel interventional strategies for psychiatric disorders: Integrating genomics, ‘enviromics’ and gene–environment interactions in valid preclinical models. British Journal of Pharmacology, 171, 4719–4728.  https://doi.org/10.1111/bph.12783.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Stewart, A. M., & Kalueff, A. V. (2015). Developing better and more valid animal models of brain disorders. Behavioural Brain Research, 276, 28–31.  https://doi.org/10.1016/j.bbr.2013.12.024.CrossRefPubMedGoogle Scholar
  28. Stewart, A. M., Nguyen, M., Poudel, M. K., Warnick, J. E., Echevarria, D. J., Beaton, E. A., et al. (2015). The failure of anxiolytic therapies in early clinical trials: What needs to be done. Expert Opinion on Investigational Drugs, 24(4), 543–556.  https://doi.org/10.1517/13543784.2015.1019063.CrossRefPubMedGoogle Scholar
  29. van der Staay, F. J. (2006). Animal models of behavioral dysfunctions: Basic concepts and classifications, and an evaluation strategy. Brain Research Reviews, 52(1), 131–159.  https://doi.org/10.1016/j.brainresrev.2006.01.006.CrossRefPubMedGoogle Scholar
  30. van der Staay, F. J., Arndt, S. S., & Nordquist, R. E. (2009). Evaluation of animal models of neurobehavioral disorders. Behavioral and Brain Functions 5, 11, 23.  https://doi.org/10.1186/1744-9081-5-11.CrossRefGoogle Scholar
  31. van der Staay, F. J., Arndt, S. S., & Nordquist, R. E. (2014). Developing mouse models of neurobehavioral disorders: When is a model a good model? In S. Pietropaolo, F. Sluyter, & W. E. Crusio (Eds.), Behavioral genetics of the mouse (pp. 3–17).  https://doi.org/10.1007/CBO9781107360556.CrossRefGoogle Scholar
  32. Willner, P. (1984). The validity of animal models of depression. Psychopharmacology, 83, 1–16.  https://doi.org/10.1007/BF00427414.CrossRefPubMedGoogle Scholar
  33. Willner, P. (1986). Validation criteria for animal models of human mental disorders: Learned helplessness as a paradigm case. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 10, 677–690.  https://doi.org/10.1016/0278-5846(86)90051-5.CrossRefGoogle Scholar
  34. Willner, P. (1991). In P. Willner (Ed.), Behavioural models in psychopharmacology (pp. 3–18). Cambridge: Cambridge University Press.Google Scholar
  35. Wright, C. D. (2002). Animal models of depression in neuropsychopharmacology qua Feyerabend philosophy of science. In S. P. Shodov (Ed.), Advances in psychologyy research (Vol. 13, pp. 129–148). New York: NovaScience Publishers.Google Scholar

Authors and Affiliations

  1. 1.Laboratório de Neurociências e Comportamento, Grupo de Pesquisas em Neurofarmacologia e Psicopatologia Experimental, Instituto de Estudos em Saúde e BiológicasUniversidade Federal do Sul e Sudeste do ParáMarabáBrazil
  2. 2.Division of Animal Behavior, Department of Animals in Science and Society, Faculty of Veterinary MedicineUniversity UtrechtUtrechtThe Netherlands
  3. 3.Behaviour and Welfare Group (formerly Emotion and Cognition Group), Department of Farm Animal Health, Veterinary FacultyUtrecht UniversityUtrechtThe Netherlands
  4. 4.UMC Utrecht Brain CenterUtrecht UniversityUtrechtThe Netherlands

Section editors and affiliations

  • Jennifer Vonk
    • 1
  1. 1.Oakland UniversityRochesterUSA