Encyclopedia of Animal Cognition and Behavior

Living Edition
| Editors: Jennifer Vonk, Todd Shackelford

Single Nucleotide Polymorphism (SNP)

  • Runjhun Mathur
  • Bhisham Singh Rana
  • Abhimanyu Kumar JhaEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-47829-6_2049-1



SNPs are single nucleotide changes in genomic DNA at which different nucleotides occur in different individuals of a population. Each nucleotide at such a position denotes an allele of the SNP.


Single nucleotide polymorphisms (SNPs), pronounced as “Snips,” is the common type of variation found in DNA between genes (Genetics Home Reference). Each SNP differs by a single DNA block represented as nucleotide. For example, a SNP may be replaced by adenine (A) in place of guanine (G) in a stretch of DNA. SNPs, if falling under coding region of genes, do not alter the amino acid sequence and, in turn, the sequence of protein produced. They are classified into two parts: synonymous, i.e., genes that do not bring any change in protein, and nonsynonymous, i.e., genes that bring change in amino acid sequence, which may be a missense (resulting in incorrect amino acid) or nonsense (not coding for any amino acid).

SNP density of existence can be...

This is a preview of subscription content, log in to check access.


  1. Al-Haggar, M., Madej-Pilarczyk, A., Kozlowski, L., Bujnicki, J. M., Yahia, S., Abdel-Hadi, D., Shams, A., Ahmad, N., Hamed, S., & Puzianowska-Kuznicka, M. (2012). A homozygous p.Arg527Leu LMNA mutation in the two unrelated Egyptian families causes overlapping mandibuloacral dysplasia and progeria syndrome. European Journal of Human Genetics, 20, 1134–1140.CrossRefGoogle Scholar
  2. Cao, R., Shi, Y., Chen, S., Ma, Y., Chen, J., Yang, J., Chen, G., & Shi, T. (2016). dbSAP: Single amino-acid polymorphism database for protein variation detection. Nucleic Acids Research, 45, 827–832.CrossRefGoogle Scholar
  3. Cordovado, S. K., Hendrix, M., Greene, C. N., Mochal, S., Earley, M. C., Farrell, P. M., Kharrazi, M., Hannon, W. H., & Mueller, P. W. (2012). CFTR mutation analysis and haplotype associations in CF patients. Molecular Genetics and Metabolism, 105, 249–254.CrossRefGoogle Scholar
  4. Giegling, I., Hartmann, A. M., Möller, H. J., & Rujescu, D. (2006). Anger- and aggression-related traits are associated with polymorphisms in the 5-HT-2A gene. Journal of Affective Disorders, 96, 75–81.CrossRefGoogle Scholar
  5. Glusman, G., Caballero, J., Mauldin, D. E., Hood, L., & Roach, J. C. (2011). Kaviar: An accessible system for testing SNV novelty. Bioinformatics, 27, 3216–3217.CrossRefGoogle Scholar
  6. Ji, G., Long, Y., Zhou, Y., Huang, C., Gu, A., & Wang, X. (2012). Common variants in mismatch repair genes are associated with increased risk of sperm DNA damage and male infertility. BMC Medicine, 10, 49.CrossRefGoogle Scholar
  7. Kimchi, S. C., Oh, J. M., Kim, I. W., Sauna, Z. E., Calcagno, A. M., Ambudkar, S. V., & Gottesman, M. M. (2007). A silent polymorphism in the MDR1 gene changes substrate specificity. Science, 315, 525–528.CrossRefGoogle Scholar
  8. Kujovich, J. L. (2011). Factor V Leiden thrombophilia. Genetics in Medicine, 13, 1–16.CrossRefGoogle Scholar
  9. Mohamed, A. A., Elsaid, O. M., Amer, E. A., Gerges, S. S., Saleh, M. A., El Abd, Y. S., Elosaily, H. H., Sleem, M. I., & El Shimy, A. (2017). Clinical significance of SNP (rs2596542) in histocompatibility complex class I-related gene A promoter region among hepatitis C virus related hepatocellular carcinoma cases. Journal of Advanced Research, 8, 343–349.CrossRefGoogle Scholar
  10. Morita, A., Nakayama, T., Doba, N., Hinohara, S., Mizutani, T., & Soma, M. (2007). Genotyping of triallelic SNPs using TaqMan PCR. Molecular and Cellular Probes, 21, 171–176.CrossRefGoogle Scholar
  11. Singh, M., Singh, P., Juneja, P. K., Singh, S., & Kaur, T. (2010). SNP–SNP interactions within APOE genes, influencing the plasma lipids in postmenopausal osteoporosis. Rheumatology International, 31, 421–423.CrossRefGoogle Scholar
  12. Wei, Q., Wang, L., Wang, Q., Kruger, W. D., & Dunbrack, R. L., Jr. (2010). Testing computational prediction of missense mutation phenotypes: functional characterization of 204 mutations of human cystathionine beta synthase. Proteins, 78, 2058–2074.Google Scholar
  13. Wilkinson, D. G., Francis, P. T., Schwam, E., & Payne-Parrish, J. (2004). Cholinesterase inhibitors used in the treatment of alzheimer’s disease: the relationship between pharmacological effects and clinical efficacy. Drugs & Aging, 21, 453–478.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Runjhun Mathur
    • 1
  • Bhisham Singh Rana
    • 1
  • Abhimanyu Kumar Jha
    • 1
    • 2
    Email author
  1. 1.Department of BiotechnologyIMS Engineering CollegeGhaziabadIndia
  2. 2.Department of BiotechnologyInstitute of Applied Medicine & ResearchGhaziabadIndia

Section editors and affiliations

  • Jennifer Vonk
    • 1
  1. 1.Oakland UniversityRochesterUSA