Encyclopedia of Animal Cognition and Behavior

Living Edition
| Editors: Jennifer Vonk, Todd Shackelford

Noncoding RNA

  • Neelabh Neelabh
  • Akash Gautam
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-47829-6_192-1

Synonyms

Definition

An RNA sequence not coding for a protein is termed as a noncoding (nc) RNA.

Introduction

In general, the term noncoding RNA is used for RNA sequences that get transcribed from DNA but do not code for a protein. However, this does not imply that these RNAs do not code for any information or are devoid of any function. Studies have shown that the genome of mammals and other higher organisms gets transcribed into noncoding RNAs, which further undergo the process of splicing, leading to smaller products. The field of noncoding RNAs has progressed a great deal in the past decade due to the development of high-throughput sequencing tools and bioinformatic software (Delpu et al. 2016; https://www.whatisepigenetics.com/non-coding-rna/).

It is fascinating to know that a large chunk of the total RNA (around 60%) belongs to the class of noncoding RNAs. The functions of the noncoding RNAs involving complex mechanisms are gradually being understood. More or less, the...

This is a preview of subscription content, log in to check access.

References

  1. Bejerano, G., Pheasant, M., Makunin, I., Stephen, S., Kent, W. J., Mattick, J. S., & Haussler, D. (2004). Ultraconserved elements in the human genome. Science, 5675, 1321–1325.CrossRefGoogle Scholar
  2. Calin, G. A., Liu, C. G., Ferracin, M., Hyslop, T., Spizzo, R., Sevignani, C., et al. (2007). Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas. Cancer Cell, 12, 215–229.CrossRefGoogle Scholar
  3. Carmichael, G. G. (2003). Antisense starts making more sense. Nature Biotechnology, 21, 371–372.CrossRefGoogle Scholar
  4. Delpu, Y., Larrieu, D., Gayral, M., Arvanitis, D., Dufresne, M., Cordelier, P., & Torrisani, J. (2016). Noncoding RNAs: Clinical and therapeutic applications. In G. Egger & P. Arimondo (Eds.), Drug discovery in cancer epigenetics (pp. 305–326). Boston, Academic.CrossRefGoogle Scholar
  5. Esteller, M. (2011). Non-coding RNAs in human disease. Nature Reviews Genetics, 12, 861.CrossRefGoogle Scholar
  6. Henry, R. W., Mittal, V., Ma, B., Kobayashi, R., & Hernandez, N. (1998). SNAP19 mediates the assembly of a functional core promoter complex (SNAPc) shared by RNA polymerases II and III. Genes & Development, 12, 2664–2672.CrossRefGoogle Scholar
  7. Ishizu, H., Siomi, H., & Siomi, M. C. (2012). Biology of PIWI-interacting RNAs: New insights into biogenesis and function inside and outside of germlines. Genes & Development, 26, 2361–2373.CrossRefGoogle Scholar
  8. Iwasaki, Y. W., Siomi, M. C., & Siomi, H. (2015). PIWI-interacting RNA: Its biogenesis and functions. Annual Review of Biochemistry, 84, 405–433.CrossRefGoogle Scholar
  9. King, T. H., Liu, B., McCully, R. R., & Fournier, M. J. (2003). Ribosome structure and activity are altered in cells lacking snoRNPs that form pseudouridines in the peptidyl transferase center. Molecular Cell, 11, 425–435.CrossRefGoogle Scholar
  10. Kiss-László, Z., Henry, Y., Bachellerie, J. P., Caizergues-Ferrer, M., & Kiss, T. (1996). Site-specific ribose methylation of preribosomal RNA: A novel function for small nucleolar RNAs. Cell, 85, 1077–1088.CrossRefGoogle Scholar
  11. Lavorgna, G., Dahary, D., Lehner, B., Sorek, R., Sanderson, C. M., & Casari, G. (2004). In search of antisense. Trends in Biochemical Sciences, 29, 88–94.CrossRefGoogle Scholar
  12. Mestdagh, P., Fredlund, E., Pattyn, F., Rihani, A., Van Maerken, T., Vermeulen, J., et al. (2010). An integrative genomics screen uncovers ncRNA T-UCR functions in neuroblastoma tumours. Oncogene, 29, 3583.CrossRefGoogle Scholar
  13. Ni, J., Tien, A. L., & Fournier, M. J. (1997). Small nucleolar RNAs direct site-specific synthesis of pseudouridine in ribosomal RNA. Cell, 89, 565–573.CrossRefGoogle Scholar
  14. Osato, N., Suzuki, Y., Ikeo, K., & Gojobori, T. (2007). Transcriptional interferences in cis natural antisense transcripts of humans and mice. Genetics, 176, 1299–1306.CrossRefGoogle Scholar
  15. Poliseno, L., Salmena, L., Zhang, J., Carver, B., Haveman, W. J., & Pandolfi, P. P. (2010). A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature, 465, 1033.CrossRefGoogle Scholar
  16. Saey, T. H. (2011). Missing lincs: Lesser-known genetic material helps explain why humans are human. Science News, 180, 22–25.CrossRefGoogle Scholar
  17. Sasidharan, R., & Gerstein, M. (2008). Genomics: Protein fossils live on as RNA. Nature, 453, 729.CrossRefGoogle Scholar
  18. Vanhée-Brossollet, C., & Vaquero, C. (1998). Do natural antisense transcripts make sense in eukaryotes? Gene, 211, 1–9.CrossRefGoogle Scholar
  19. Wang, X. J., Gaasterland, T., & Chua, N. H. (2005). Genome-wide prediction and identification of cis-natural antisense transcripts in Arabidopsis thaliana. Genome Biology, 6, R30.CrossRefGoogle Scholar
  20. Zhang, Y., Liu, X. S., Liu, Q. R., & Wei, L. (2006). Genome-wide in silico identification and analysis of cis natural antisense transcripts (cis-NATs) in ten species. Nucleic Acids Research, 34, 3465–3475.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Zoology (MMV), Institute of ScienceBanaras Hindu UniversityVaranasiIndia
  2. 2.Centre for Neural and Cognitive Sciences, School of Medical SciencesUniversity of HyderabadHyderabadIndia

Section editors and affiliations

  • Akash Gautam
    • 1
  1. 1.Centre for Neural and Cognitive Sciences, School of Medical SciencesUniversity of HyderabadHyderabadIndia