Encyclopedia of Animal Cognition and Behavior

Living Edition
| Editors: Jennifer Vonk, Todd Shackelford

Canine Navigation

  • Jacqueline BoydEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-47829-6_1740-1

Synonyms

Definition

Canine navigation refers to the process or activity of how members (either individuals or populations) of the family Canidae identify their position both temporally and spatially, and then move to follow a given route, typically to access key biological resources such as water, food, or reproductive opportunities.

Introduction

Navigation is the process by which an organism identifies its location in time and space and then uses that information to permit specific movement. The ability to move in a specific direction is essential to access key biological resources such as water, food, and reproductive opportunities. Consequently, movement and navigation within a given environment are essential for survival. Navigation is also critical for species that migrate, defined as a regular, long-distance movement toward a different location, and is observed across the animal kingdom, in both terrestrial and aquatic species.

The ability...

This is a preview of subscription content, log in to check access.

References

  1. Avens, L., & Lohmann, K. J. (2004). Navigation and seasonal migratory orientation in juvenile sea turtles. Journal of Experimental Biology, 207, 1771–1778.CrossRefGoogle Scholar
  2. Bauer, S., & Hoye, B. J. (2014). Migratory animals couple biodiversity and ecosystem functioning worldwide. Science, 344(6179), 1242552.  https://doi.org/10.1126/science.1242552.CrossRefPubMedGoogle Scholar
  3. Begall, S., Malkemper, E. P., Červený, J., Němec, P., & Burda, H. (2013). Magnetic alignment in mammals and other animals. Mammalian Biology, 78(1), 10–20.  https://doi.org/10.1016/j.mambio.2012.05.005.CrossRefGoogle Scholar
  4. Bekoff, M. (2001). Observations of scent-marking and discriminating self from others by a domestic dog (Canis familiaris): Tales of displaced yellow snow. Behavioural Processes, 55(2), 75–79.CrossRefGoogle Scholar
  5. Berdahl, A. M., Kao, A. B., Flack, A., Westley, P. A. H., Codling, E. A., Couzin, I. D., Dell, A. I., & Biro, D. (2018). Collective animal navigation and migratory culture: From theoretical models to empirical evidence. Philosophical Transactions of the Royal Society B, 373, 20170009.  https://doi.org/10.1098/rstb.2017.0009.CrossRefGoogle Scholar
  6. Boitani, L., Ciucci, P., & Ortoani, A. (2007). Behaviour and social ecology of free-ranging dogs. In P. Jensen (Ed.), The behavioural biology of dogs (pp. 147–165). Wallingford: CABI International.CrossRefGoogle Scholar
  7. Boyd, J. (2016). How dogs find their way home (without a GPS). The Conversation. https://theconversation.com/how-dogs-find-their-way-home-without-a-gps-58526
  8. Cattet, J., & Etienne, A. S. (2004). Blindfolded dogs relocate a target through path integration. Animal Behaviour, 68(1), 203–212.CrossRefGoogle Scholar
  9. Christie, L.-A., Studzinski, C. M., Araujo, J. A., Leung, C. S. K., Ikeda-Douglas, C. J., Head, E., Cotman, C. W., & Milgram, N. W. (2005). A comparison of egocentric and allocentric age-dependent spatial learning in the beagle dog. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 29(3), 361–369.CrossRefGoogle Scholar
  10. Collett, T. S., & Graham, P. (2004). Animal navigation: Path integration, visual landmarks and cognitive maps. Current Biology, 14(12), R475–R477.  https://doi.org/10.1016/j.cub.2004.06.013.CrossRefPubMedGoogle Scholar
  11. Dacke, M., Nilsson, D. E., Scholtz, C. H., Byrne, M., & Warrant, E. J. (2003). Animal behaviour: Insect orientation to polarized moonlight. Nature, 424(6944), 33.CrossRefGoogle Scholar
  12. Dacke, M., Baird, E., Byrne, M., Scholtz, C. H., & Warrant, E. J. (2013). Dung beetles use the milky way for orientation. Current Biology, 23(4), 298–300.CrossRefGoogle Scholar
  13. Daniels, T. J., & Bekoff, M. (1989). Spatial and temporal resource use by feral and abandoned dogs. Ethology, 81, 300–312.  https://doi.org/10.1111/j.1439-0310.1989.tb00776.x.CrossRefGoogle Scholar
  14. Dingle, H., & Drake, V. A. (2007). What is migration? Bioscience, 57(2), 113–121.  https://doi.org/10.1641/B570206.CrossRefGoogle Scholar
  15. Giurfra, M., & Capaldi, E. A. (1999). Vectors, routes, and maps: New discoveries about navigation in insects. Trends Neuroscience, 22, 237–242.CrossRefGoogle Scholar
  16. Hare, B., & Tomasello, M. (2005). Human-like social skills in dogs? Trends in Cognitive Sciences, 9(9), 439–444.CrossRefGoogle Scholar
  17. Hart, V., Nováková, P., Malkemper, E. P., Begall, S., Hanzal, V., Ježek, M., Kušta, T., Němcová, V., Adámková, J., Benediktová, K., Červený, J., & Burda, H. (2013). Dogs are sensitive to small vibrations of the Earth’s magnetic field. Frontiers in Zoology, 10, 80.CrossRefGoogle Scholar
  18. Ioalè, P., Nozzolini, M., & Papi, F. (1990). Homing pigeons do extract directional information from olfactory stimuli. Behavioral Ecology and Sociobiology, 26, 301–305.CrossRefGoogle Scholar
  19. Johnsen, S. & Lohmann, K. J. (2005). The physics and neurobiology of magnetoreception. Nature Reviews Neuroscience, 6, 703–712.  https://doi.org/10.1038/nrn1745.CrossRefGoogle Scholar
  20. Lingwood, J., Blades, M., Farran, E. K., Courbois, Y., & Matthews, D. (2015). The development of wayfinding abilities in children: Learning routes with and without landmarks. Journal of Environmental Psychology, 41, 74–80.  https://doi.org/10.1016/j.jenvp.2014.11.008.CrossRefGoogle Scholar
  21. Lohmann, K. J., Cain, S. D., Dodge, S. A., & Lohmann, C. M. F. (2001). Regional magnetic fields as navigational markers for sea turtles. Science, 294, 364–366.CrossRefGoogle Scholar
  22. Lohmann, K. J., Lohmann, C. M. F., & Putman, N. F. (2007). Magnetic maps in animals: nature’s GPS. Journal of Experimental Biology, 210, 3697–3705.CrossRefGoogle Scholar
  23. Mech, L. D., & Boitani, L. (2003). Wolf social ecology. In L. D. Mech & L. Boitani (Eds.), Wolves; ecology, behaviour and conservation (pp. 1–34). Chicago: The University of Chicago Press.CrossRefGoogle Scholar
  24. Nesterova, A. P., & Hansen, F. (2009). Simple and integrated detours: Field tests with Columbian ground squirrels. Animal Cognition, 12, 655–670.CrossRefGoogle Scholar
  25. Nießner, C., Denzau, S., Malkemper, E. O., Gross, J. C., Burda, H., Winkhofer, M., & Peichl, L. (2016). Cryptochrome 1 in retinal cone photoreceptors suggests a novel functional role in mammals. Scientific Reports, 6, 21848.  https://doi.org/10.1038/srep21848.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Olberg, R. M., Worthington, A. H., & Venator, K. R. (2000). Prey pursuit and interception in dragonflies. Journal of Comparative Physiology A, 186, 155–162.CrossRefGoogle Scholar
  27. Seguinot, V., Cattet, J., & Benhamou, S. (1998). Path integration in dogs. Animal Behaviour, 55(4), 787–797.CrossRefGoogle Scholar
  28. Shaffer, D. M., Krauchunas, S. M., Eddy, M., & McBeath, M. K. (2004). How dogs navigate to catch frisbees. Psychological Science, 15(7), 437–441.  https://doi.org/10.1111/j.0956-7976.2004.00698.x.CrossRefPubMedGoogle Scholar
  29. Simmons, J. A., Fenton, M. B., & O’Farrell, M. J. O. (1979). Echolocation and pursuit of prey by bats. Science, 203, 16–21.CrossRefGoogle Scholar
  30. Skiles, D. D. (1985). The geomagnetic field: Its nature, history, and biological relevance. In J. L. Kirschvink, D. S. Jones, & B. J. MacFadden (Eds.), Magnetite biomineralization and magnetoreception in organisms: A new biomagnetism (pp. 43–102). New York/London: Plenum Press.CrossRefGoogle Scholar
  31. Szetei, V., Miklósi, Á., Topál, J., & Csányi, V. (2003). When dogs seem to lose their nose: An investigation on the use of visual and olfactory cues in communicative context between dog and owner. Applied Animal Behaviour Science, 83(2), 141–152.CrossRefGoogle Scholar
  32. Walcott, C. (1996). Pigeon homing: Observations, experiments and confusions. The Journal of Experimental Biology, 199(1), 21–27.PubMedGoogle Scholar
  33. Wiltschko, R., & Wiltschko, W. (2015). Chapter seven – Avian navigation: A combination of innate and learned mechanisms. In M. Naguib, H. J. Brockmann, J. C. Mitani, L. W. Simmons, L. Barrett, S. Healy, & P. J. B. Slater (Eds.), Advances in the study of behavior (Vol. 47, pp. 229–310). New York: Academic Press.  https://doi.org/10.1016/bs.asb.2014.12.002.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Skinner’s Pet FoodsStradbrokeUK

Section editors and affiliations

  • Stephanie Jett
    • 1
  1. 1.Georgia College & State UniversityMobileUSA