Smartphone-Based Cell Detection

  • Maria Maddalena Calabretta
  • Laura Montali
  • Antonia Lopreside
  • Aldo Roda
  • Elisa MicheliniEmail author
Living reference work entry


The smartphone integrated high-resolution complementary metal-oxide semiconductor (CMOS) sensors have been widely exploited to detect optical signals, relying on colorimetric, fluorescent (FL), and bio-chemiluminescent detections. In the last 5 years, there has been an exponential increase in the publications on the use of smartphones as stand-alone bioanalytical devices. Conversely, the use of smartphones to detect cells and cell biosensors has been seldomly explored. In this chapter, we will review the smartphone potential as portable detector, and we will provide an overview on the state-of-the-art of using smartphones to detect cells and cell biosensors. Major research trends, open issues, and limitations are also addressed to provide the reader a glance on this challenging research trend.


Smartphone Cell biosensor Bioluminescence Colorimetric detection Fluorescence Analytical device 


  1. Amin R, Knowlton S, Dupont J, Bergholz JS, Joshi A, Hart A, Yenilmez B, Yu CH, Wentworth A, Zhao JJ (2017) 3D-printed smartphone-based device for labelfree cell separation. J 3D Print Med 1(3):155–164CrossRefGoogle Scholar
  2. Aronoff-Spencer E, Venkatesh AG, Sun A, Brickner H, Looney D, Hall DA (2016) Detection of Hepatitis C core antibody by dual-affinity yeast chimera and smartphone-based electrochemical sensing. Biosens Bioelectron 86:690–696CrossRefGoogle Scholar
  3. Cevenini L, Calabretta MM, Lopreside A, Tarantino G, Tassoni A, Ferri M, Roda A, Michelini E (2016a) Exploiting NanoLuc luciferase for smartphone-based bioluminescence cell biosensor for (anti)-inflammatory activity and toxicity. Anal Bioanal Chem 408:8859–8868CrossRefGoogle Scholar
  4. Cevenini L, Calabretta MM, Tarantino G, Michelini E, Roda A (2016b) Smartphone-interfaced 3D printed toxicity biosensor integrating bioluminescent “sentinel cells”. Sensors Actuators B Chem 225:249–257CrossRefGoogle Scholar
  5. Cevenini L, Lopreside A. Calabretta MM D’Elia M, Simoni P, Michelini E, Roda A (2018) A novel bioluminescent NanoLuc yeast-estrogen screen biosensor (nanoYES) with a compact wireless camera for effect-based detection of endocrine-disrupting chemicals; Anal Bioanal Chem 410:1237–1246CrossRefGoogle Scholar
  6. Christensen DA, Herron JN (2009) Optical system design for biosensors based on CCD detection. In: Rasooly A, Herold KE (eds) Biosensors and biodetection. Methods in molecular biology, vol 503. Humana Press, TotowaGoogle Scholar
  7. Class B, Thorne N, Aguisanda F, Southall N, McKew JC, Zheng W (2015) High-throughput viability assay using an autonomously bioluminescent cell line with a bacterial Lux reporter. J Lab Autom 20:164–174CrossRefGoogle Scholar
  8. Cui X, Ren L, Shan Y, Wang X, Yang Z, Li C, Xua J, Bo M (2018) Smartphone-based rapid quantification of viable bacteria by single-cell microdroplet turbidity imaging. Analyst 143:330Google Scholar
  9. Eltzov E, Guttel S, Yuen Kei Adarina L, Dewi Sinawang P, Ionescu RE, Marks RS (2015) Lateral flow immunoassaysefrom paper strip to smartphone technology. Electroanalysis 27:2116–2130CrossRefGoogle Scholar
  10. England CG, Ehlerding EB, Cai W (2016) NanoLuc: a small luciferase is brightening up the field of bioluminescence. Bioconjug Chem 27(5):1175–1187CrossRefGoogle Scholar
  11. Ferris CJ, Gilmore KG, Wallace GG, Panhuis M (2013) Biofabrication: an overview of the approaches used for printing of living cells. Appl Microbiol Biotechnol 97:4243–4258CrossRefGoogle Scholar
  12. Fronczek CF, Park TS, Harshman DK, Nicolini AM, Yoon JY (2014) Paper microfluidic extraction and direct smartphone-based identification of pathogenic nucleic acids from field and clinical samples. RSC Adv 4:11103–11110CrossRefGoogle Scholar
  13. Grieshaber D, MacKenzie R, Voros J, Reimhult E (2008) Electrochemical biosensors sensor principles and architectures. Sensors 8:1400–1458CrossRefGoogle Scholar
  14. Hutchison JR, Erikson RL, Sheen AM, Ozanich RM, Kelly RT (2015) Reagent-free and portable detection of Bacillus anthracis spores using a microfluidic incubator and smartphone microscope. Analyst 140(18):6269–6276CrossRefGoogle Scholar
  15. Im H, Castro CM, Shao H, Liong M, Song J, Pathania D, Fexon L, Min C, AvilaWallace M, Zurkiya O (2015) Digital diffraction analysis enables low-cost molecular diagnostics on a smartphone. Proc Natl Acad Sci U S A 112(18):5613–5618CrossRefGoogle Scholar
  16. Jiang J, Wang X, Chao R, Ren Y, Hu C, Xu Z, Liu GL (2014) Smartphone based portable bacteria pre-concentrating microfluidic sensor and impedance sensing system. Sensors Actuators B 193:653–659CrossRefGoogle Scholar
  17. Kim H, Awofeso O, Choi S, Jung Y, Bae E (2017a) Colorimetric analysis of salivaealcohol test strips by smartphone-based instruments using machine-learning algorithms. Appl Opt 56:8492CrossRefGoogle Scholar
  18. Kim H, Jung Y, Doh IJ, Lozano-Mahecha RA, Applegate B, Bae E (2017b) Smartphone-based low light detection for bioluminescence application. Sci Rep 9(7):40203CrossRefGoogle Scholar
  19. Lee SA, Yang C (2014) A smartphone-based chip-scale microscope using ambient illumination. Lab Chip 14(16):3056–3063CrossRefGoogle Scholar
  20. Liu X, Lin TY, Lillehoj PB (2014) Smartphones for cell and biomolecular detection. Ann Biomed Eng 42(11):2205–2217CrossRefGoogle Scholar
  21. Meng X, Huang H, Yan K, Tian X, Yu W, Cui H, Kong Y, Xue L, Liu C, Wang S (2016) Smartphone based hand-held quantitative phase microscope using the transport of intensity equation method. Lab Chip 17(1):104–109CrossRefGoogle Scholar
  22. Michelini E, Cevenini L, Mezzanotte L, Ablamsky D, Southworth T, Branchini BR, Roda A (2008) Combining intracellular and secreted bioluminescent reporter proteins for multicolor cell-based assays. Photochem Photobiol Sci 7(2):212CrossRefGoogle Scholar
  23. Michelini E, Cevenini L, Calabretta MM, Calabria D, Roda A (2014) Exploiting in vitro and in vivo bioluminescence for the implementation of the three Rs principle (replacement, reduction, and refinement in drug discovery). Anal Bioanal Chem 406:5531–5539CrossRefGoogle Scholar
  24. Michelini E, Calabretta MM, Cevenini L, Lopreside A, Southworth T, Fontaine DM, Simoni P, Branchini BR, Roda A (2019) Smartphone-based multicolor bioluminescent 3D spheroid biosensors for T monitoring inflammatory activity. Biosens Bioelectron 123:269–277CrossRefGoogle Scholar
  25. Mora CA, Herzog AF, Raso RA, Stark WJ (2015) Programmable living material containing reporter micro-organisms permits quantitative detection of oligosaccharides. Biomaterials 61:1–9CrossRefGoogle Scholar
  26. Navruz I, Coskun AF, Wong J, Mohammad S, Tseng D, Nagi R, Phillips S, Ozcan A (2013) Smart-phone based computational microscopy using multi-frame contact imaging on a fiber-optic array. Lab Chip 13(20):4015–4023CrossRefGoogle Scholar
  27. Olivo J, Foglia L, Casulli MA, Boero C, Carrara S, De Micheli G (2014) Glucose and lactate monitoring in cell cultures with a wireless android interface. In: Biomedical circuits and systems conference (BioCAS). IEEE, Piscataway, pp 400–403Google Scholar
  28. Rajendran VK, Bakthavathsalam P, Ali PMJ (2014) Smartphone based bacterial detection using biofunctionalized fluorescent nanoparticles. Microchim Acta 181:1815–1821CrossRefGoogle Scholar
  29. Raut N, O’Connor G, Pasini P, Daunert S (2012) Engineered cells as biosensing systems in biomedical analysis. Anal Bioanal Chem 402:3147–3159CrossRefGoogle Scholar
  30. Roda A, Cevenini L, Michelini E, Branchini BR (2011) A portable bioluminescence engineered cell-based biosensor for on-site applications. Biosens Bioelectron 26(8):3647–3653CrossRefGoogle Scholar
  31. Roda A, Cevenini L, Borg S, Michelini E, Calabretta MM, Schüler D (2013) Bioengineered bioluminescent magnetotactic bacteria as a powerful tool for chip-based whole-cell biosensors. Lab Chip 13(24):4881–4889CrossRefGoogle Scholar
  32. Roda A, Guardigli M, Calabria D, Calabretta MM, Cevenini L, Michelini E (2014a) A 3D-printed device for a smartphone-based chemiluminescence biosensor for lactate in oral fluid and sweat. Analyst 139(24):6494–6501CrossRefGoogle Scholar
  33. Roda A, Michelini E, Cevenini L, Calabria D, Calabretta MM, Simoni P (2014b) Integrating biochemiluminescence detection on smartphones: mobile chemistry platform for point-of-need analysis. Anal Chem 86:7299–7304CrossRefGoogle Scholar
  34. Shen L, Hagen JA, Papautsky I (2012) Point-of-care colorimetric detection with a smartphone. Lab Chip 12:4240–4243CrossRefGoogle Scholar
  35. Shrivastava S, Lee WI, Lee NE (2018) Culture-free, highly sensitive, quantitative detection of bacteria from minimally processed samples using fluorescence imaging by smartphone. Biosens Bioelectron 109:90–97CrossRefGoogle Scholar
  36. Skandarajah A, Reber CD, Switz NA, Fletcher DA (2014) Quantitative imaging with a mobile phone microscope. PLoS One 9(5):96906CrossRefGoogle Scholar
  37. Su L, Jia W, Houb C, Lei YU (2011) Microbial biosensors: a review. Biosens Bioelectron 26:1788–1799CrossRefGoogle Scholar
  38. Su K, Pan Y, Wan Z, Zhong L, Fang J, Zou Q, Li H, Wang P (2017) Smartphone-based portable biosensing system using cell viability biosensor for okadaic acid detection. Sensors Actuators B Chem 251:134–143CrossRefGoogle Scholar
  39. Tseng D, Mudanyali O, Oztoprak C, Isikman SO, Sencan I, Yaglidere O, Ozcan A (2010) Lensfree microscopy on a cellphone. Lab Chip 10(14):1787–1792CrossRefGoogle Scholar
  40. Zhang H, Li X, Fengchun H, Siyuan W, Lei W, Ning L, Jianhan LB (2019) A capillary biosensor for rapid detection of Salmonella using Fe-nanocluster amplification and smart phone imaging. Biosens Bioelectron 127:142–149CrossRefGoogle Scholar
  41. Zhu HY, Mavandadi S, Coskun AF, Yaglidere O, Ozcan A (2011) Optofluidic fluorescent imaging cytometry on a cell phone. Anal Chem 83(17):6641–6647CrossRefGoogle Scholar
  42. Zhu HY, Sikora U, Ozcan A (2012) Quantum dot enabled detection of Escherichia coli using a cell-phone. Analyst 137:2541–2544CrossRefGoogle Scholar
  43. Zhu H, Sencan I, Wong J, Dimitrov S, Tseng D, Nagashima K, Ozcan A (2013) Cost-effective and rapid blood analysis on a cell-phone. Lab Chip 13(7):1282–1288CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Maria Maddalena Calabretta
    • 1
  • Laura Montali
    • 1
  • Antonia Lopreside
    • 1
  • Aldo Roda
    • 1
    • 2
  • Elisa Michelini
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of Chemistry “G. Ciamician”University of BolognaBolognaItaly
  2. 2.INBB, Istituto Nazionale di Biostrutture e BiosistemiRomeItaly
  3. 3.Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR)University of BolognaBolognaItaly

Section editors and affiliations

  • Isao Karube
    • 1
  • Sylvia Daunert
  • Gérald Thouand
    • 2
  1. 1.School of Bioscience and BiotechnologyTokyo University of TechnologyTokyoJapan
  2. 2.Technological InstituteUniversity of Nantes, CNRS GEPEALa Roche sur YonFrance

Personalised recommendations