Advertisement

Cell-Free Synthetic Biology Biosensors

  • David K. KarigEmail author
  • Allison Reno
  • Lauren Elizabeth Franklin
  • Andrea C. Timm
Living reference work entry
  • 28 Downloads

Abstract

The field of synthetic biology offers powerful tools for biosensor development that enable the integration of sensing, regulation, and response components. Cell-free protein expression systems offer an appealing platform for harnessing synthetic biology capabilities for a variety of sensing applications. Cell-free systems consist of components, typically derived from living cells, needed to reconstitute protein expression in vitro. In vitro operation can offer improved safety and flexibility profiles as compared to the use of living cells. Although cost, yield, and scale of cell-free protein expression were long barriers to practical applications of cell-free technology, these have all improved significantly, making biosensing applications appealing. Consequently, different sensing strategies have now been demonstrated for a variety of different ligands, using both protein and nucleic acid sensing components. In addition, a growing number and diversity of regulatory networks are being developed, and these can be incorporated to enable basic signal processing, integration, and output. Furthermore, several recent advances in robustness, shelf-life, and operation platforms have generated a variety of practical deployment options for cell-free biosensors. Therefore, this chapter discusses developments in cell-free biosensing strategies, regulatory networks, outputs, and deployment.

Keywords

Cell-free Synthetic biology Biosensor Protein expression Gene networks 

References

  1. Akyazi T, Basabe-Desmonts L, Benito-Lopez F (2018) Review on microfluidic paper-based analytical devices towards commercialisation. Anal Chim Acta 1001:1–17.  https://doi.org/10.1016/j.aca.2017.11.010CrossRefPubMedGoogle Scholar
  2. Ambert-Balay K, Pothier P (2013) Evaluation of 4 immunochromatographic tests for rapid detection of norovirus in faecal samples. J Clin Virol 56(3):194–198.  https://doi.org/10.1016/j.jcv.2012.11.001CrossRefPubMedGoogle Scholar
  3. Arnold FH (2018) Directed evolution: bringing new chemistry to life. Angew Chem Int Ed 57(16):4143–4148CrossRefGoogle Scholar
  4. Aw R, Polizzi KM (2019) Biosensor-assisted engineering of a high-yield Pichia pastoris cell-free protein synthesis platform. Biotechnol Bioeng 116(3):656–666PubMedCrossRefGoogle Scholar
  5. Basu S, Gerchman Y, Collins CH, Arnold FH, Weiss R (2005) A synthetic multicellular system for programmed pattern formation. Nature 434(7037):1130–1134.  https://doi.org/10.1038/nature03461CrossRefPubMedGoogle Scholar
  6. Blind M, Blank M (2015) Aptamer selection technology and recent advances. Mol Ther –Nucleic Acids 4(1):e223PubMedPubMedCentralCrossRefGoogle Scholar
  7. Brenner K, Karig DK, Weiss R, Arnold FH (2007) Engineered bidirectional communication mediates a consensus in a microbial biofilm consortium. Proc Natl Acad Sci U S A 104(44):17300–17304.  https://doi.org/10.1073/pnas.0704256104CrossRefPubMedPubMedCentralGoogle Scholar
  8. Brödel AK, Sonnabend A, Kubick S (2014) Cell-free protein expression based on extracts from CHO cells. Biotechnol Bioeng 111(1):25–36PubMedCrossRefGoogle Scholar
  9. Cai Q, Hanson JA, Steiner AR, Tran C, Masikat MR, Chen R, Zawada JF, Sato AK, Hallam TJ, Yin G (2015) A simplified and robust protocol for immunoglobulin expression in Escherichia coli cell-free protein synthesis systems. Biotechnol Prog 31(3):823–831PubMedPubMedCentralCrossRefGoogle Scholar
  10. Carlson ED, Gan R, Hodgman CE, Jewett MC (2012) Cell-free protein synthesis: applications come of age. Biotechnol Adv 30(5):1185–1194PubMedCrossRefGoogle Scholar
  11. Caschera F, Noireaux V (2014) Synthesis of 2.3 mg/ml of protein with an all Escherichia coli cell-free transcription–translation system. Biochimie 99:162–168PubMedCrossRefGoogle Scholar
  12. Chappell J, Jensen K, Freemont PS (2013) Validation of an entirely in vitro approach for rapid prototyping of DNA regulatory elements for synthetic biology. Nucleic Acids Res 41:3471PubMedPubMedCentralCrossRefGoogle Scholar
  13. Chong S (2014) Overview of cell-free protein synthesis: historic landmarks, commercial systems, and expanding applications. Curr Protoc Mol Biol 108:16 30 11-11.  https://doi.org/10.1002/0471142727.mb1630s108CrossRefGoogle Scholar
  14. Danino T, Mondragon-Palomino O, Tsimring L, Hasty J (2010) A synchronized quorum of genetic clocks. Nature 463(7279):326–330.  https://doi.org/10.1038/nature08753CrossRefPubMedPubMedCentralGoogle Scholar
  15. Darmostuk M, Rimpelova S, Gbelcova H, Ruml T (2015) Current approaches in SELEX: an update to aptamer selection technology. Biotechnol Adv 33(6):1141–1161PubMedCrossRefGoogle Scholar
  16. Des Soye BJ, Davidson SR, Weinstock MT, Gibson DG, Jewett MC (2018) Establishing a high-yielding cell-free protein synthesis platform derived from Vibrio natriegens. ACS Synth Biol 7(9):2245–2255PubMedCrossRefGoogle Scholar
  17. Dopp JL, Reuel NF (2018) Process optimization for scalable E. coli extract preparation for cell-free protein synthesis. Biochem Eng J 138:21–28CrossRefGoogle Scholar
  18. Efrat Y, Tayar AM, Daube SS, Levy M, Bar-Ziv RH (2018) Electric-field manipulation of a compartmentalized cell-free gene expression reaction. ACS Synth Biol 7(8):1829–1833PubMedCrossRefGoogle Scholar
  19. Erismann-Ebner K, Marowsky A, Arand M (2019) In-vitro characterization of mCerulean3_mRuby3 as a novel FRET pair with favorable bleed-through characteristics. Biosensors 9(1):33PubMedCentralCrossRefPubMedGoogle Scholar
  20. Failmezger J, Scholz S, Blombach B, Siemann-Herzberg M (2018) Cell-free protein synthesis from fast-growing Vibrio natriegens. Front Microbiol 9:1146PubMedPubMedCentralCrossRefGoogle Scholar
  21. Fallah-Araghi A, Baret J-C, Ryckelynck M, Griffiths AD (2012) A completely in vitro ultrahigh-throughput droplet-based microfluidic screening system for protein engineering and directed evolution. Lab Chip 12(5):882–891PubMedCrossRefGoogle Scholar
  22. Fujiwara K, Doi N (2016) Biochemical preparation of cell extract for cell-free protein synthesis without physical disruption. PLoS One 11(4):e0154614.  https://doi.org/10.1371/journal.pone.0154614CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gan R, Jewett MC (2014) A combined cell-free transcription-translation system from Saccharomyces cerevisiae for rapid and robust protein synthe. Biotechnol J 9(5):641–651PubMedCrossRefGoogle Scholar
  24. Garamella J, Marshall R, Rustad M, Noireaux V (2016) The all E. coli TX-TL toolbox 2.0: a platform for cell-free synthetic biology. ACS Synth Biol 5(4):344–355.  https://doi.org/10.1021/acssynbio.5b00296CrossRefPubMedGoogle Scholar
  25. Grawe A, Dreyer A, Vornholt T, Barteczko U, Buchholz L, Drews G, Ho UL, Jackowski ME, Kracht M, Luders J, Bleckwehl T, Rositzka L, Ruwe M, Wittchen M, Lutter P, Muller K, Kalinowski J (2019) A paper-based, cell-free biosensor system for the detection of heavy metals and date rape drugs. PLoS One 14(3):e0210940.  https://doi.org/10.1371/journal.pone.0210940CrossRefPubMedPubMedCentralGoogle Scholar
  26. Green AA, Silver PA, Collins JJ, Yin P (2014) Toehold switches: de-novo-designed regulators of gene expression. Cell 159(4):925–939PubMedPubMedCentralCrossRefGoogle Scholar
  27. Gregorio NE, Levine MZ, Oza JP (2019) A user’s guide to cell-free protein synthesis. Methods Protoc 2(1).  https://doi.org/10.3390/mps2010024PubMedCentralCrossRefPubMedGoogle Scholar
  28. Halleran AD, Murray RM (2017) Cell-free and in vivo characterization of Lux, Las, and Rpa quorum activation systems in E. coli. ACS Synth Biol 7(2):752–755PubMedCrossRefGoogle Scholar
  29. Harbers M (2014) Wheat germ systems for cell-free protein expression. FEBS Lett 588(17):2762–2773PubMedCrossRefGoogle Scholar
  30. Hori Y, Kantak C, Murray RM, Abate AR (2017) Cell-free extract based optimization of biomolecular circuits with droplet microfluidics. Lab Chip 17(18):3037–3042PubMedCrossRefGoogle Scholar
  31. Hunt JP, Yang SO, Wilding KM, Bundy BC (2017) The growing impact of lyophilized cell-free protein expression systems. Bioengineered 8(4):325–330PubMedCrossRefGoogle Scholar
  32. Isalan M, Lemerle C, Serrano L (2005) Engineering gene networks to emulate Drosophila embryonic pattern formation. PLoS Biol 3(3):e64PubMedPubMedCentralCrossRefGoogle Scholar
  33. Iyer S, Doktycz MJ (2013) Thrombin-mediated transcriptional regulation using DNA aptamers in DNA-based cell-free protein synthesis. ACS Synth Biol 3(6):340–346PubMedPubMedCentralCrossRefGoogle Scholar
  34. Iyer S, Karig DK, Norred SE, Simpson ML, Doktycz MJ (2013) Multi-input regulation and logic with T7 promoters in cells and cell-free systems. PLoS One 8(10):e78442PubMedPubMedCentralCrossRefGoogle Scholar
  35. Jaroentomeechai T, Stark JC, Natarajan A, Glasscock CJ, Yates LE, Hsu KJ, Mrksich M, Jewett MC, DeLisa MP (2018) Single-pot glycoprotein biosynthesis using a cell-free transcription-translation system enriched with glycosylation machinery. Nat Commun 9(1):2686PubMedPubMedCentralCrossRefGoogle Scholar
  36. Kahn JS, Ruiz RC, Sureka S, Peng S, Derrien TL, An D, Luo D (2016) DNA microgels as a platform for cell-free protein expression and display. Biomacromolecules 17:2019PubMedCrossRefPubMedCentralGoogle Scholar
  37. Karig DK (2017) Cell-free synthetic biology for environmental sensing and remediation. Curr Opin Biotechnol 45:69–75.  https://doi.org/10.1016/j.copbio.2017.01.010PubMedCrossRefGoogle Scholar
  38. Karig D, Weiss R (2005) Signal-amplifying genetic circuit enables in vivo observation of weak promoter activation in the Rhl quorum sensing system. Biotechnol Bioeng 89(6):709–718.  https://doi.org/10.1002/bit.20371CrossRefPubMedPubMedCentralGoogle Scholar
  39. Karig DK, Siuti P, Dar RD, Retterer ST, Doktycz MJ, Simpson ML (2011) Model for biological communication in a nanofabricated cell-mimic driven by stochastic resonance. Nano Commun Networks 2(1):39–49CrossRefGoogle Scholar
  40. Karig DK, Iyer S, Simpson ML, Doktycz MJ (2012) Expression optimization and synthetic gene networks in cell-free systems. Nucleic Acids Res 40(8):3763–3774PubMedCrossRefPubMedCentralGoogle Scholar
  41. Karig DK, Bessling S, Thielen P, Zhang S, Wolfe J (2017) Preservation of protein expression systems at elevated temperatures for portable therapeutic production. J R Soc Interface 14(129).  https://doi.org/10.1098/rsif.2016.1039PubMedCentralCrossRefPubMedGoogle Scholar
  42. Karig D, Martini KM, Lu T, DeLateur NA, Goldenfeld N, Weiss R (2018) Stochastic turing patterns in a synthetic bacterial population. Proc Natl Acad Sci U S A 115(26):6572–6577.  https://doi.org/10.1073/pnas.1720770115CrossRefPubMedPubMedCentralGoogle Scholar
  43. Kawaguchi T, Chen YP, Norman RS, Decho AW (2008) Rapid screening of quorum-sensing signal N-acyl homoserine lactones by an in vitro cell-free assay. Appl Environ Microbiol 74(12):3667–3671PubMedPubMedCentralCrossRefGoogle Scholar
  44. Kelwick R, Webb AJ, MacDonald JT, Freemont PS (2016) Development of a Bacillus subtilis cell-free transcription-translation system for prototyping regulatory elements. Metab Eng 38:370–381PubMedCrossRefGoogle Scholar
  45. Khambhati K, Bhattacharjee G, Gohil N, Braddick D, Kulkarni V, Singh V (2019) Exploring the potential of cell-free protein synthesis for extending the abilities of biological systems. Front Bioeng Biotechnol 7:248PubMedPubMedCentralCrossRefGoogle Scholar
  46. Kim T-W, Keum J-W, Oh I-S, Choi C-Y, Park C-G, Kim D-M (2006) Simple procedures for the construction of a robust and cost-effective cell-free protein synthesis system. J Biotechnol 126(4):554–561PubMedCrossRefGoogle Scholar
  47. Kuroita T, Kawakami B, Kawamura Y, Nishikawa S, Endo Y (2006) Composition for cell-free protein synthesis. Google PatentsGoogle Scholar
  48. Kuruma Y, Ueda T (2015) The PURE system for the cell-free synthesis of membrane proteins. Nat Protoc 10(9):1328–1344PubMedCrossRefGoogle Scholar
  49. Lakhin A, Tarantul V, Gening L (2013) Aptamers: problems, solutions and prospects. Acta Naturae (англоязычная версия) 5(4 (19)):34CrossRefGoogle Scholar
  50. Lavickova B, Maerkl SJ (2019) A simple, robust, and low-cost method to produce the PURE cell-free system. ACS Synth Biol 8(2):455–462PubMedCrossRefGoogle Scholar
  51. Li J, Wang H, Kwon YC, Jewett MC (2017) Establishing a high yielding streptomyces-based cell-free protein synthesis system. Biotechnol Bioeng 114(6):1343–1353PubMedCrossRefGoogle Scholar
  52. Lim SY, Kim K-O, Kim D-M, Park CB (2009) Silica-coated alginate beads for in vitro protein synthesis via transcription/translation machinery encapsulation. J Biotechnol 143(3):183–189PubMedCrossRefGoogle Scholar
  53. Lindenburg L, Merkx M (2014) Engineering genetically encoded FRET sensors. Sensors 14(7):11691–11713PubMedCrossRefGoogle Scholar
  54. Lu Y (2017) Cell-free synthetic biology: engineering in an open world. Synth Syst Biotechnol 2(1):23–27PubMedPubMedCentralCrossRefGoogle Scholar
  55. Lutz S, Iamurri SM (2018) Protein engineering: past, present, and future. In: Protein engineering. Springer, New York, pp 1–12Google Scholar
  56. Ma D, Shen L, Wu K, Diehnelt CW, Green AA (2018) Low-cost detection of norovirus using paper-based cell-free systems and synbody-based viral enrichment. Synth Biol 3(1):ysy018CrossRefGoogle Scholar
  57. Machida K, Mikami S, Masutani M, Mishima K, Kobayashi T, Imataka H (2014) A translation system reconstituted with human factors proves that processing of encephalomyocarditis virus proteins 2A and 2B occurs in the elongation phase of translation without eukaryotic release factors. J Biol Chem 289(46):31960–31971PubMedPubMedCentralCrossRefGoogle Scholar
  58. Madin K, Sawasaki T, Ogasawara T, Endo Y (2000) A highly efficient and robust cell-free protein synthesis system prepared from wheat embryos: plants apparently contain a suicide system directed at ribosomes. Proc Natl Acad Sci 97(2):559–564PubMedCrossRefGoogle Scholar
  59. Moore SJ, Lai HE, Needham H, Polizzi KM, Freemont PS (2017) Streptomyces venezuelae TX-TL–a next generation cell-free synthetic biology tool. Biotechnol J 12(4):1600678CrossRefGoogle Scholar
  60. Moore SJ, MacDonald JT, Wienecke S, Ishwarbhai A, Tsipa A, Aw R, Kylilis N, Bell DJ, McClymont DW, Jensen K, Polizzi KM, Biedendieck R, Freemont PS (2018) Rapid acquisition and model-based analysis of cell-free transcription–translation reactions from nonmodel bacteria. Proc Natl Acad Sci 115(19):E4340–E4349.  https://doi.org/10.1073/pnas.1715806115CrossRefPubMedGoogle Scholar
  61. Niederholtmeyer H, Sun ZZ, Hori Y, Yeung E, Verpoorte A, Murray RM, Maerkl SJ (2015) Rapid cell-free forward engineering of novel genetic ring oscillators. elife 4:e09771PubMedPubMedCentralCrossRefGoogle Scholar
  62. Nirenberg MW, Matthaei JH (1961) The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc Natl Acad Sci U S A 47:1588–1602.  https://doi.org/10.1073/pnas.47.10.1588CrossRefPubMedPubMedCentralGoogle Scholar
  63. Noireaux V, Libchaber A (2004) A vesicle bioreactor as a step toward an artificial cell assembly. Proc Natl Acad Sci 101(51):17669–17674PubMedCrossRefGoogle Scholar
  64. Noireaux V, Bar-Ziv R, Libchaber A (2003) Principles of cell-free genetic circuit assembly. Proc Natl Acad Sci 100(22):12672–12677PubMedCrossRefGoogle Scholar
  65. Ogawa A (2011) Rational design of artificial riboswitches based on ligand-dependent modulation of internal ribosome entry in wheat germ extract and their applications as label-free biosensors. RNA 17(3):478–488PubMedPubMedCentralCrossRefGoogle Scholar
  66. Ogawa A, Masuoka H, Ota T (2017) Artificial OFF-riboswitches that downregulate internal ribosome entry without hybridization switches in a eukaryotic cell-free translation system. ACS Synth Biol 6(9):1656–1662PubMedCrossRefGoogle Scholar
  67. Ohashi H, Kanamori T, Shimizu Y, Ueda T (2010) A highly controllable reconstituted cell-free system-a breakthrough in protein synthesis research. Curr Pharm Biotechnol 11(3):267–271PubMedCrossRefGoogle Scholar
  68. Pardee K (2018) Perspective: solidifying the impact of cell-free synthetic biology through lyophilization. Biochem Eng J 138:91–97PubMedPubMedCentralCrossRefGoogle Scholar
  69. Pardee K, Green AA, Ferrante T, Cameron DE, DaleyKeyser A, Yin P, Collins JJ (2014) Paper-based synthetic gene networks. Cell 159(4):940–954PubMedPubMedCentralCrossRefGoogle Scholar
  70. Pardee K, Green Alexander A, Takahashi Melissa K, Braff D, Lambert G, Lee Jeong W, Ferrante T, Ma D, Donghia N, Fan M, Daringer Nichole M, Bosch I, Dudley Dawn M, O’Connor David H, Gehrke L, Collins James J (2016) Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell.  https://doi.org/10.1016/j.cell.2016.04.059PubMedCrossRefGoogle Scholar
  71. Pelham HR, Jackson RJ (1976) An efficient mRNA-dependent translation system from reticulocyte lysates. Eur J Biochem 67(1):247–256PubMedCrossRefGoogle Scholar
  72. Pellinen T, Huovinen T, Karp M (2004) A cell-free biosensor for the detection of transcriptional inducers using firefly luciferase as a reporter. Anal Biochem 330(1):52–57PubMedCrossRefGoogle Scholar
  73. Perez JG, Stark JC, Jewett MC (2016) Cell-free synthetic biology: engineering beyond the cell. Cold Spring Harb Perspect Biol 8:a023853PubMedPubMedCentralCrossRefGoogle Scholar
  74. Peters LE, Bendzko P (2002) Method for producing complex multienzymatical, storage resistant reaction mixtures and use thereof. Google PatentsGoogle Scholar
  75. Prindle A, Samayoa P, Razinkov I, Danino T, Tsimring LS, Hasty J (2011) A sensing array of radically coupled genetic ‘biopixels’. Nature 481(7379):39–44.  https://doi.org/10.1038/nature10722CrossRefPubMedPubMedCentralGoogle Scholar
  76. Ribeiro LF, Amarelle V, Ribeiro LFC, Guazzaroni M, #xed, a-Eugenia (2019) Converting a periplasmic binding protein into a synthetic biosensing switch through domain insertion. Biomed Res Int 2019:15.  https://doi.org/10.1155/2019/4798793CrossRefGoogle Scholar
  77. Sadat Mousavi P, Smith SJ, Chen JB, Karlikow M, Tinafar A, Robinson C, Liu W, Ma D, Green AA, Kelley SO, Pardee K (2020) A multiplexed, electrochemical interface for gene-circuit-based sensors. Nat Chem 12(1):48–55.  https://doi.org/10.1038/s41557-019-0366-yCrossRefPubMedGoogle Scholar
  78. Salehi AS, Shakalli Tang MJ, Smith MT, Hunt JM, Law RA, Wood DW, Bundy BC (2017) Cell-free protein synthesis approach to biosensing hTRbeta-specific endocrine disruptors. Anal Chem 89(6):3395–3401.  https://doi.org/10.1021/acs.analchem.6b04034CrossRefPubMedGoogle Scholar
  79. Salehi ASM, Yang SO, Earl CC, Shakalli Tang MJ, Porter Hunt J, Smith MT, Wood DW, Bundy BC (2018) Biosensing estrogenic endocrine disruptors in human blood and urine: a RAPID cell-free protein synthesis approach. Toxicol Appl Pharmacol 345:19–25.  https://doi.org/10.1016/j.taap.2018.02.016CrossRefPubMedGoogle Scholar
  80. Sawasaki T, Ogasawara T, Morishita R, Endo Y (2002) A cell-free protein synthesis system for high-throughput proteomics. Proc Natl Acad Sci 99(23):14652–14657.  https://doi.org/10.1073/pnas.232580399CrossRefPubMedGoogle Scholar
  81. Schreiber A, Stühn LG, Huber MC, Geissinger SE, Rao A, Schiller SM (2019) Self-assembly toolbox of tailored supramolecular architectures based on an amphiphilic protein library. Small 15:1900163CrossRefGoogle Scholar
  82. Schwarz-Schilling M, Aufinger L, Mückl A, Simmel F (2016) Chemical communication between bacteria and cell-free gene expression systems within linear chains of emulsion droplets. Integr Biol 8(4):564–570CrossRefGoogle Scholar
  83. Shimizu Y, Inoue A, Tomari Y, Suzuki T, Yokogawa T, Nishikawa K, Ueda T (2001) Cell-free translation reconstituted with purified components. Nat Biotechnol 19(8):751PubMedCrossRefGoogle Scholar
  84. Shin J, Noireaux V (2012) An E. coli cell-free expression toolbox: application to synthetic gene circuits and artificial cells. ACS Synth Biol 1(1):29–41PubMedCrossRefGoogle Scholar
  85. Shrestha P, Holland TM, Bundy BC (2012) Streamlined extract preparation for Escherichia coli-based cell-free protein synthesis by sonication or bead vortex mixing. BioTechniques 53(3):163–174PubMedCrossRefGoogle Scholar
  86. Silverman AD, Karim AS, Jewett MC (2019) Cell-free gene expression: an expanded repertoire of applications. Nat Rev Genet.  https://doi.org/10.1038/s41576-019-0186-3PubMedCrossRefGoogle Scholar
  87. Skretas G, Wood DW (2005) Regulation of protein activity with small-molecule-controlled inteins. Protein Sci 14(2):523–532.  https://doi.org/10.1110/ps.04996905CrossRefPubMedPubMedCentralGoogle Scholar
  88. Skretas G, Meligova AK, Villalonga-Barber C, Mitsiou DJ, Alexis MN, Micha-Screttas M, Steele BR, Screttas CG, Wood DW (2007) Engineered chimeric enzymes as tools for drug discovery: generating reliable bacterial screens for the detection, discovery, and assessment of estrogen receptor modulators. J Am Chem Soc 129(27):8443–8457.  https://doi.org/10.1021/ja067754jCrossRefPubMedGoogle Scholar
  89. Smith MT, Berkheimer SD, Werner CJ, Bundy BC (2014a) Lyophilized Escherichia coli-based cell-free systems for robust, high-density, long-term storage. BioTechniques 56(4):186–193.  https://doi.org/10.2144/000114158CrossRefPubMedGoogle Scholar
  90. Smith MT, Wilding KM, Hunt JM, Bennett AM, Bundy BC (2014b) The emerging age of cell-free synthetic biology. FEBS Lett 588(17):2755–2761PubMedCrossRefGoogle Scholar
  91. Soltani M, Davis BR, Ford H, Nelson JAD, Bundy BC (2018) Reengineering cell-free protein synthesis as a biosensor: biosensing with transcription, translation, and protein-folding. Biochem Eng J 138:165–171.  https://doi.org/10.1016/j.bej.2018.06.014CrossRefGoogle Scholar
  92. Stoltenburg R, Reinemann C, Strehlitz B (2007) SELEX – a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng 24(4):381–403.  https://doi.org/10.1016/j.bioeng.2007.06.001CrossRefPubMedGoogle Scholar
  93. Sun ZZ, Yeung E, Hayes CA, Noireaux V, Murray RM (2014) Linear DNA for rapid prototyping of synthetic biological circuits in an Escherichia coli based TX-TL cell-free system. ACS Synth Biol 3(6):387–397.  https://doi.org/10.1021/sb400131aCrossRefPubMedGoogle Scholar
  94. Takanaga H, Frommer WB (2010) Facilitative plasma membrane transporters function during ER transit. FASEB J 24(8):2849–2858.  https://doi.org/10.1096/fj.09-146472CrossRefPubMedPubMedCentralGoogle Scholar
  95. Timm AC, Shankles PG, Foster CM, Doktycz MJ, Retterer ST (2015) Characterization of extended channel bioreactors for continuous-flow protein production. J Vac Sci Technol B Nanotechnol Microelectron Mater Process Meas Phenom 33(6):06FM02Google Scholar
  96. Timm AC, Shankles PG, Foster CM, Doktycz MJ, Retterer ST (2016) Toward microfluidic reactors for cell-free protein synthesis at the point-of-care. Small 12(6):810–817PubMedCrossRefGoogle Scholar
  97. To AC-Y, Chu DH-T, Wang AR, Li FC-Y, Chiu AW-O, Gao DY, Choi CHJ, Kong S-K, Chan T-F, Chan K-M (2018) A comprehensive web tool for toehold switch design. Bioinformatics 34(16):2862–2864PubMedCrossRefGoogle Scholar
  98. Tran K, Gurramkonda C, Cooper MA, Pilli M, Taris JE, Selock N, Han TC, Tolosa M, Zuber A, Peñalber-Johnstone C (2018) Cell-free production of a therapeutic protein: expression, purification, and characterization of recombinant streptokinase using a CHO lysate. Biotechnol Bioeng 115(1):92–102PubMedCrossRefGoogle Scholar
  99. Vinje J (2015) Advances in laboratory methods for detection and typing of norovirus. J Clin Microbiol 53(2):373–381.  https://doi.org/10.1128/JCM.01535-14CrossRefPubMedPubMedCentralGoogle Scholar
  100. Vogele K, Frank T, Gasser L, Goetzfried MA, Hackl MW, Sieber SA, Simmel FC, Pirzer T (2018) Towards synthetic cells using peptide-based reaction compartments. Nat Commun 9(1):3862PubMedPubMedCentralCrossRefGoogle Scholar
  101. Voyvodic PL, Pandi A, Koch M, Conejero I, Valjent E, Courtet P, Renard E, Faulon JL, Bonnet J (2019) Plug-and-play metabolic transducers expand the chemical detection space of cell-free biosensors. Nat Commun 10(1):1697.  https://doi.org/10.1038/s41467-019-09722-9CrossRefPubMedPubMedCentralGoogle Scholar
  102. Vyas K, Atkinson C, Clark DA, Irish D (2015) Comparison of five commercially available immunochromatographic tests for the detection of norovirus in faecal specimens. J Hosp Infect 91(2):176–178.  https://doi.org/10.1016/j.jhin.2015.06.013CrossRefPubMedGoogle Scholar
  103. Wang H, Li J, Jewett MC (2018) Development of a Pseudomonas putida cell-free protein synthesis platform for rapid screening of gene regulatory elements. Synth Biol 3(1).  https://doi.org/10.1093/synbio/ysy003
  104. Wen KY, Cameron L, Chappell J, Jensen K, Bell DJ, Kelwick R, Kopniczky M, Davies JC, Filloux A, Freemont PS (2017) A cell-free biosensor for detecting quorum sensing molecules in P. aeruginosa-infected respiratory samples. ACS Synth Biol 6(12):2293–2301.  https://doi.org/10.1021/acssynbio.7b00219CrossRefPubMedGoogle Scholar
  105. Wiegand DJ, Lee HH, Ostrov N, Church GM (2018) Establishing a cell-free Vibrio natriegens expression system. ACS Synth Biol 7(10):2475–2479PubMedCrossRefGoogle Scholar
  106. Wilding KM, Long Zhao E, Earl CC, Bundy BC (2019) Thermostable lyoprotectant-enhanced cell-free protein synthesis for on-demand endotoxin-free therapeutic production. New Biotechnol.  https://doi.org/10.1016/j.nbt.2019.07.004PubMedCrossRefGoogle Scholar
  107. Yim SS, Johns NI, Park J, Gomes AL, McBee RM, Richardson M, Ronda C, Chen SP, Garenne D, Noireaux V (2019) Multiplex transcriptional characterizations across diverse bacterial species using cell-free systems. Mol Syst Biol 15(8):e8875PubMedPubMedCentralCrossRefGoogle Scholar
  108. Yue K, Zhu Y, Kai L (2019) Cell-free protein synthesis: chassis toward the minimal cell. Cell 8(4):315CrossRefGoogle Scholar
  109. Zawada JF, Yin G, Steiner AR, Yang J, Naresh A, Roy SM, Gold DS, Heinsohn HG, Murray CJ (2011) Microscale to manufacturing scale-up of cell-free cytokine production – a new approach for shortening protein production development timelines. Biotechnol Bioeng 108(7):1570–1578PubMedPubMedCentralCrossRefGoogle Scholar
  110. Zemella A, Thoring L, Hoffmeister C, Kubick S (2015) Cell-free protein synthesis: pros and cons of prokaryotic and eukaryotic systems. Chembiochem 16(17):2420–2431PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • David K. Karig
    • 1
    • 2
    Email author
  • Allison Reno
    • 1
  • Lauren Elizabeth Franklin
    • 1
  • Andrea C. Timm
    • 2
  1. 1.Department of BioengineeringClemson UniversityClemsonUSA
  2. 2.Research and Exploratory Development DepartmentJohns Hopkins University Applied Physics LaboratoryLaurelUSA

Section editors and affiliations

  • Shimshon Belkin
    • 1
  • Paul Freemont
    • 2
  1. 1.Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
  2. 2.Faculty of MedicineImperial CollegeLondonUK

Personalised recommendations