Advertisement

Cell-Based Biosensor for Rapid Screening of Pathogens and Toxins

  • Celina To
  • Pratik Banerjee
  • Arun K. BhuniaEmail author
Living reference work entry
  • 13 Downloads

Abstract

Exposure to pathogens, toxins, and pollutants is a major public health concern. Often air, water, and food are the major sources. Efforts to develop and deploy highly sensitive detection and diagnostic platforms are of great importance to protect the health of consumers, military personnel, and civilians. Biosensors employing a proper transducer have the potential to digitally amplify signals for prompt analysis of small amounts of analyte and the consequent institution of remedial actions. Cell-based biosensor (CBB) using mammalian and microbial cells is referred to as a functional biosensor since it interrogates the interaction between the living cells and an analyte to provide physiologically relevant information regarding the functionality of an analyte. Thus, CBB is advantageous over immunosensor or nucleic acid-based biosensors, which may not assess functionality. However, the major drawback of CBB is the maintenance of viability of the cells during deployment in a rugged environment or in the point-of-care use.

Keywords

Cell-based sensor Bacteria Bacteriophage Mammalian cell Detection Pathogen Toxin Diagnosis 

Notes

Acknowledgments

This material is based upon work supported by the US Department of Agriculture; Agricultural Research Service, under Agreement No. 59-8072-6-001; the USDA National Institute of Food and Agriculture (Hatch accession no. 1016249); and the Center for Food Safety Engineering at Purdue University. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the US Department of Agriculture.

References

  1. Ames BN, Durston WE, Yamasaki E, Lee FD (1973) Carcinogens are mutagens: a simple test system combining liver homogenates for activation and bacteria for detection. Proc Natl Acad Sci U S A 70(8):2281–2285PubMedPubMedCentralCrossRefGoogle Scholar
  2. Aronoff-Spencer E, Venkatesh AG, Sun A, Brickner H, Looney D, Hall DA (2016) Detection of Hepatitis C core antibody by dual-affinity yeast chimera and smartphone-based electrochemical sensing. Biosens Bioelectron 86:690–696PubMedCrossRefGoogle Scholar
  3. Banerjee P, Bhunia AK (2009) Mammalian cell-based biosensors for pathogens and toxins. Trends Biotechnol 27(3):179–188PubMedCrossRefGoogle Scholar
  4. Banerjee P, Bhunia AK (2010) Cell-based biosensor for rapid screening of pathogens and toxins. Biosens Bioelectron 26:99–106PubMedCrossRefGoogle Scholar
  5. Banerjee P, Lenz D, Robinson JP, Rickus JL, Bhunia AK (2008) A novel and simple cell-based detection system with a collagen-encapsulated B-lymphocyte cell line as a biosensor for rapid detection of pathogens and toxins. Lab Investig 88(2):196–206PubMedCrossRefGoogle Scholar
  6. Banerjee P, Franz B, Bhunia A (2010) Mammalian cell-based sensor system. In: Belkin S, Gu MB (eds) Whole cell sensing systems I, vol 117. Springer, Berlin, Germany, pp 21–55CrossRefGoogle Scholar
  7. Banerjee P, Kintzios S, Prabhakarpandian B (2013) Biotoxin detection using cell-based sensors. Toxins 5(12):2366–2383PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bhunia AK (2014) One day to one hour: how quickly can foodborne pathogens be detected? Future Microbiol 9(8):935–946PubMedCrossRefGoogle Scholar
  9. Bhunia AK, Wampler JL (2005) Animal and cell culture models for foodborne bacterial pathogens. In: Fratamico P, Bhunia AK, Smith JL (eds) Foodborne pathogens: microbiology and molecular biology, vol 1532. Caiser Academic Press, Taylor and Francis, Boca Raton, FLGoogle Scholar
  10. Bhunia AK, Westbrook DG (1998) Alkaline phosphatase release assay to determine cytotoxicity for Listeria species. Lett Appl Microbiol 26:305–310PubMedCrossRefGoogle Scholar
  11. Biran A, Yagur-Kroll S, Pedahzur R, Buchinger S, Reifferscheid G, Ben-Yoav H, Shacham-Diamand Y, Belkin S (2010) Bacterial genotoxicity bioreporters. Microb Biotechnol 3(4):412–427PubMedPubMedCentralCrossRefGoogle Scholar
  12. Cho I-H, Radadia AD, Farrokhzad K, Ximenes E, Bae E, Singh AK, Oliver H, Ladisch M, Bhunia A, Applegate B, Mauer L, Bashir R, Irudayaraj J (2014) Nano/micro and spectroscopic approaches to food pathogen detection. Annu Rev Anal Chem 7:65–88CrossRefGoogle Scholar
  13. Curtis T, Naal RMZG, Batt C, Tabb J, Holowka D (2008) Development of a mast cell-based biosensor. Biosens Bioelectron 23(7):1024–1031PubMedCrossRefGoogle Scholar
  14. Feng J, Jester BW, Tinberg CE, Mandell DJ, Antunes MS, Chari R, Morey KJ, Rios X, Medford JI, Church GM, Fields S, Baker D (2015) A general strategy to construct small molecule biosensors in eukaryotes. elife 4:e10606PubMedPubMedCentralCrossRefGoogle Scholar
  15. Fu E, Yager P, Floriano PN, Christodoulides N, McDevitt JT (2011) Perspective on diagnostics for global health. IEEE Pulse 2(6):40–50PubMedPubMedCentralCrossRefGoogle Scholar
  16. Jiang D, Jiang H, Ji J, Sun X, Qian H, Zhang G, Tang L (2014) Mast-cell-based fluorescence biosensor for rapid detection of major fish allergen parvalbumin. J Agric Food Chem 62(27):6473–6480PubMedCrossRefGoogle Scholar
  17. Jiang D, Zhu P, Jiang H, Ji J, Sun X, Gu W, Zhang G (2015) Fluorescent magnetic bead-based mast cell biosensor for electrochemical detection of allergens in foodstuffs. Biosens Bioelectron 70:482–490PubMedCrossRefPubMedCentralGoogle Scholar
  18. Jiang D, Ge P, Wang L, Jiang H, Yang M, Yuan L, Ge Q, Fang W, Ju X (2019) A novel electrochemical mast cell-based paper biosensor for the rapid detection of milk allergen casein. Biosens Bioelectron 130:299–306PubMedCrossRefPubMedCentralGoogle Scholar
  19. Johnstone AF, Gross GW, Weiss DG, Schroeder OH, Gramowski A, Shafer TJ (2010) Microelectrode arrays: a physiologically based neurotoxicity testing platform for the 21st century. Neurotoxicology 31(4):331–350PubMedCrossRefPubMedCentralGoogle Scholar
  20. Kaina B, Fritz G (2006) DNA damaging agents encyclopedic reference of genomics and proteomics in molecular medicine. Springer, Berlin/Heidelberg, pp 416–423CrossRefGoogle Scholar
  21. Konowalchuk J, Speirs JI, Stavric S (1977) Vero response to a cytotoxin of Escherichia coli. Infect Immun 18(3):775–779PubMedPubMedCentralCrossRefGoogle Scholar
  22. Maldonado Y, Fiser JC, Nakatsu CH, Bhunia AK (2005) Cytotoxicity potential and genotypic characterization of Escherichia coli isolates from environmental and food sources. Appl Environ Microbiol 71(4):1890–1898PubMedPubMedCentralCrossRefGoogle Scholar
  23. Mavrikou S, Flampouri E, Iconomou D, Kintzios S (2017) Development of a cellular biosensor for the detection of aflatoxin B1, based on the interaction of membrane engineered Vero cells with anti-AFB1 antibodies on the surface of gold nanoparticle screen printed electrodes. Food Control 73:64–70CrossRefGoogle Scholar
  24. Mayer M, Arrizabalaga O, Lieb F, Ciba M, Ritter S, Thielemann C (2018) Electrophysiological investigation of human embryonic stem cell derived neurospheres using a novel spike detection algorithm. Biosens Bioelectron 100:462–468PubMedCrossRefPubMedCentralGoogle Scholar
  25. Ngamwongsatit P, Banada PP, Panbangred W, Bhunia AK (2008) WST-1-based cell cytotoxicity assay as a substitute for MTT-based assay for rapid detection of toxigenic Bacillus species using CHO cell line. J Microbiol Methods 73(3):211–215PubMedCrossRefPubMedCentralGoogle Scholar
  26. O’Shaughnessy TJ, Gray SA, Pancrazio JJ (2004) Cultured neuronal networks as environmental biosensors. J Appl Toxicol 24(5):379–385PubMedCrossRefPubMedCentralGoogle Scholar
  27. Perdikaris A, Alexandropoulos N, Kintzios S (2009) Development of a novel, ultra-rapid biosensor for the qualitative detection of hepatitis B virus-associated antigens and anti-HBV, based on “membrane-engineered” fibroblast cells with virus-specific antibodies and antigens. Sensors (Basel, Switzerland) 9(3):2176–2186CrossRefGoogle Scholar
  28. Perdikaris A, Vassilakos N, Yiakoumettis I, Kektsidou O, Kintzios S (2011) Development of a portable, high throughput biosensor system for rapid plant virus detection. J Virol Methods 177(1):94–99PubMedCrossRefPubMedCentralGoogle Scholar
  29. Qu M, Boruah BM, Zhang W, Li Y, Liu W, Bi Y, Gao GF, Yang R, Liu D, Gao B (2013) A Rat Basophilic Leukaemia cell sensor for the detection of pathogenic viruses. Biosens Bioelectron 43:412–418PubMedCrossRefGoogle Scholar
  30. Quiñones B, Massey S, Friedman M, Swimley MS, Teter K (2009) Novel cell-based method to detect Shiga toxin 2 from Escherichia coli O157:H7 and inhibitors of toxin activity. Appl Environ Microbiol 75(5):1410–1416PubMedPubMedCentralCrossRefGoogle Scholar
  31. Rider TH, Petrovick MS, Nargi FE, Harper JD, Schwoebel ED, Mathews RH, Blanchard DJ, Bortolin LT, Young AM, Chen J, Hollis MA (2003) A B cell-based sensor for rapid identification of pathogens. Science 301(5630):213–215PubMedCrossRefGoogle Scholar
  32. Roberts PH, Davis KC, Garstka WR, Bhunia AK (2001) Lactate dehydrogenase release assay from Vero cells to distinguish verotoxin producing Escherichia coli from non-verotoxin producing strains. J Microbiol Methods 43(3):171–181PubMedCrossRefGoogle Scholar
  33. Salic A, Mitchison TJ (2008) A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci U S A 105(7):2415PubMedPubMedCentralCrossRefGoogle Scholar
  34. Scarlatos A, Cadotte AJ, DeMarse TB, Welt BA (2008) Cortical networks grown on microelectrode arrays as a biosensor for botulinum toxin. J Food Sci 73(3):E129–E136PubMedCrossRefGoogle Scholar
  35. Shimomura-Shimizu M, Karube I (2010) Yeast based sensors. In: Belkin S, Gu MB (eds) Whole cell sensing systems I: reporter cells and devices. Springer, Berlin/Heidelberg, pp 1–19Google Scholar
  36. Shroyer M, Bhunia A (2003) Development of a rapid 1-h fluorescence-based cytotoxicity assay for Listeria species. J Microbiol Methods 55(1):35–40PubMedCrossRefGoogle Scholar
  37. Singh AK, Bhunia AK (2018) Optical biosensors in foodborne pathogen detection smart biosensor technology, 2nd edn. Caister Academic Press, Norfolk, UK, p 443CrossRefGoogle Scholar
  38. Singh A, Poshtiban S, Evoy S (2013) Recent advances in bacteriophage based biosensors for food-borne pathogen detection. Sensors 13(2):1763–1786PubMedCrossRefGoogle Scholar
  39. Smartt AE, Ripp S (2011) Bacteriophage reporter technology for sensing and detecting microbial targets. Anal Bioanal Chem 400(4):991–1007PubMedCrossRefGoogle Scholar
  40. Stephenson L, Benedick J (2010) Cell-based assays. In Biofiles (Sauk Village, IL: Sigma-Aldrich)Google Scholar
  41. Teo SC, Wong LS (2014) Whole cell-based biosensors for environmental heavy metals detection. Annu Res Rev Biol 4:2663–2674CrossRefGoogle Scholar
  42. To CZ, Bhunia AK (2019) Three dimensional Vero cell-platform for rapid and sensitive screening of Shiga-toxin producing Escherichia coli. Front Microbiol 10:949PubMedPubMedCentralCrossRefGoogle Scholar
  43. Velusamy V, Arshak K, Korostynska O, Oliwa K, Adley C (2010) An overview of foodborne pathogen detection: in the perspective of biosensors. Biotechnol Adv 28(2):232–254PubMedCrossRefPubMedCentralGoogle Scholar
  44. Wang X-Q, Duan X-M, Liu L-H, Fang Y-Q, Tan Y (2005) Carboxyfluorescein diacetate succinimidyl ester fluorescent dye for cell labeling. Acta Biochim Biophys Sin 37(6):379–385PubMedCrossRefPubMedCentralGoogle Scholar
  45. Wang L, Wang R, Kong B-W, Jin S, Ye K, Fang W, Li Y (2015) B cells using calcium signaling for specific and rapid detection of Escherichia coli O157: H7. Sci Rep 5:10598PubMedPubMedCentralCrossRefGoogle Scholar
  46. Xin W, Yao W, Gao X, You Z, Gao S, Kang L, Li Q, Zhou Y, Yang H, Jiang P, Wang J (2014) Development of aequorin-based mast cell nanosensor for rapid identification of botulinum neurotoxin type B. J Biomed Nanotechnol 10(11):3318–3328PubMedCrossRefPubMedCentralGoogle Scholar
  47. Xu Z, Mulchandani A, Chen W (2003) Detection of benzene, toluene, ethyl benzene, and xylenes (BTEX) using toluene dioxygenase-peroxidase coupling reactions. Biotechnol Prog 19(6):1812–1815PubMedCrossRefPubMedCentralGoogle Scholar
  48. Xu T, Close D, Smartt A, Ripp S, Sayler G (2014) Detection of organic compounds with whole-cell bioluminescent bioassays. Adv Biochem Eng Biotechnol 144:111–151PubMedPubMedCentralGoogle Scholar
  49. Ye Y, Guo H, Sun X (2019) Recent progress on cell-based biosensors for analysis of food safety and quality control. Biosens Bioelectron 126:389–404PubMedCrossRefPubMedCentralGoogle Scholar
  50. Zamani P, Sajedi RH, Hosseinkhani S, Zeinoddini M (2016) Hybridoma as a specific, sensitive, and ready to use sensing element: a rapid fluorescence assay for detection of Vibrio cholerae O1. Anal Bioanal Chem 408(23):6443–6451PubMedCrossRefGoogle Scholar
  51. Zhang D, Coronel-Aguilera CP, Romero PL, Perry L, Minocha U, Rosenfield C, Gehring AG, Paoli GC, Bhunia AK, Applegate B (2016) The use of a novel NanoLuc-based reporter phage for the detection of Escherichia coli O157:H7. Sci Rep 6:33235PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Celina To
    • 1
    • 2
  • Pratik Banerjee
    • 3
  • Arun K. Bhunia
    • 1
    • 4
    • 5
    Email author
  1. 1.Molecular Food Microbiology Laboratory, Department of Food SciencePurdue UniversityWest LafayetteUSA
  2. 2.HygienaCamarilloUSA
  3. 3.Division of Epidemiology, Biostatistics, and Environmental HealthThe University of MemphisMemphisUSA
  4. 4.Department of Comparative PathobiologyPurdue UniversityWest LafayetteUSA
  5. 5.Purdue Institute of Inflammation, Immunology and Infectious DiseasePurdue UniversityWest LafayetteUSA

Section editors and affiliations

  • Isao Karube
    • 1
  • Sylvia Daunert
  • Gérald Thouand
    • 2
  1. 1.School of Bioscience and BiotechnologyTokyo University of TechnologyTokyoJapan
  2. 2.Technological InstituteUniversity of Nantes, CNRS GEPEALa Roche sur YonFrance

Personalised recommendations