Advertisement

Obesity pp 31-50 | Cite as

Neuroendocrinology of Energy Balance

  • Antonio GiordanoEmail author
  • Enzo NisoliEmail author
Reference work entry
Part of the Endocrinology book series (ENDOCR)

Abstract

In the past decades, the spiraling obesity epidemic has renewed the interest of basic scientists in the control of hunger and satiety, food intake and energy expenditure, and body weight regulation by the central nervous system. The discovery of the adipose-derived satiety hormone, leptin, in 1994 greatly advanced the neuroscience of obesity by enabling detection and characterization of the – largely hypothalamic – neurocircuits that underpin feeding behavior and energy balance regulation. A number of circulating factors that affect the energy balance at the central level have subsequently been discovered in the adipose organ, the gastrointestinal tract, and the endocrine pancreas or their mechanisms of action have been characterized. Although several major pieces of the picture are still missing, the available data suggest that energy balance homeostasis is achieved at the central level by hypothalamic and brainstem neurocircuits which integrate metabolic stimuli with cognitive, hedonic, and emotional cues, regulating energy use and storage and body weight homeostasis through behavioral, autonomic, and endocrine responses. These extremely complex and closely integrated neurocircuits are mainly peptidergic and give rise to a highly redundant system. They operate continuously in response to stimulatory or inhibitory hormonal and metabolic inputs coming from the periphery of the body through the circulation. Such crosstalk between “center” and “periphery” is currently a major area of energy balance research. Its elucidation is expected to provide in the near future novel druggable targets for the effective treatment of obesity and related diseases in humans.

Keywords

Hypothalamus Arcuate nucleus Solitary tract nucleus Circumventricular organs Leptin Insulin Ghrelin Cholecystokinin Peptide YY Glucagon-like peptide-1 Amylin 

References

  1. Abbott CR, Monteiro M, Small CJ, Sajedi A, Smith KL, Parkinson JR, Ghatei MA, Bloom SR. The inhibitory effects of peripheral administration of peptide YY(3-36) and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal-brainstem-hypothalamic pathway. Brain Res. 2005;1044:127–31.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Ahima RS, Prabakaran D, Mantzoros C, Qu D, Lowell B, Maratos-Flier E, Flier JS. Role of leptin in the neuroendocrine response to fasting. Nature. 1996;382:250–2.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Al Massadi O, López M, Tschöp M, Diéguez C, Nogueiras R. Current understanding of the hypothalamic ghrelin pathways inducing appetite and adiposity. Trends Neurosci. 2017;40:167–80.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Anand BK, Brobeck JR. Localization of a “feeding center” in the hypothalamus of the rat. Proc Soc Exp Biol Med. 1951;77:323–4.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Aponte Y, Atasoy D, Sternson SM. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat Neurosci. 2011;14:351–5.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bagdade JD, Bierman EL, Porte D Jr. The significance of basal insulin levels in the evaluation of the insulin response to glucose in diabetic and nondiabetic subjects. J Clin Invest. 1967;46:1549–57.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Ballaz S. The unappreciated roles of the cholecystokinin receptor CCK(1) in brain functioning. Rev Neurosci. 2017;28:573–85.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Banks WA. Is obesity a disease of the blood-brain barrier? Physiological, pathological and evolutionary considerations. Curr Pharm Des. 2003;9:801–9.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Batterham RL, Cowley MA, Small CJ, Herzog H, Cohen MA, Dakin CL, Wren AM, Brynes AE, Low MJ, Ghatei MA, Cone RD, Bloom SR. Gut hormone PYY(3-36) physiologically inhibits food intake. Nature. 2002;418:650–4.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Baura GD, Foster DM, Porte D Jr, Kahn SE, Bergman RN, Cobelli C, Schwartz MW. Saturable transport of insulin from plasma into the central nervous system of dogs in vivo. A mechanism for regulated insulin delivery to the brain. J Clin Invest. 1993;92:1824–30.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Becskei C, Riediger T, Zünd D, Wookey P, Lutz TA. Immunohistochemical mapping of calcitonin receptors in the adult rat brain. Brain Res. 2004;1030:221–33.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Beglinger C, Degen L, Matzinger D, D’Amato M, Drewe J. Loxiglumide, a CCK-A receptor antagonist, stimulates calorie intake and hunger feelings in humans. Am J Phys Regul Integr Comp Phys. 2001;280:R1149–54.Google Scholar
  13. Burger KS, Berner LA. A functional neuroimaging review of obesity, appetitive hormones and ingestive behavior. Physiol Behav. 2014;136:121–7.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Chelikani PK, Haver AC, Reidelberger RD. Intravenous infusion of peptide YY(3-36) potently inhibits food intake in rats. Endocrinology. 2005;146:879–88.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ, Lakey ND, Culpepper J, Moore KJ, Breitbart RE, Duyk GM, Tepper RI, Morgenstern JP. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell. 1996;84:491–5.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Coleman DL. Obese and diabetes. Two mutant genes causing diabetes-obesity syndromes in mice. Diabetologia. 1978;14:141–8.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, Ohannesian JP, Marco CC, McKee LJ, Bauer TL, et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med. 1996;334:292–5.PubMedCrossRefGoogle Scholar
  18. Cooper GJ, Willis AC, Clark A, Turner RC, Sim RB, Reid KB. Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proc Natl Acad Sci U S A. 1987;84:8628–32.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Corp ES, Curcio M, Gibbs J, Smith GP. The effect of centrally administered CCK-receptor antagonists on food intake in rats. Physiol Behav. 1997;61:823–7.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Dodd GT, Tiganis T. Insulin action in the brain: roles in energy and glucose homeostasis. J Neuroendocrinol. 2017; 29(10):1–13.CrossRefGoogle Scholar
  21. Ekblad E, Sundler F. Distribution of pancreatic polypeptide and peptide YY. Peptides. 2002;23:251–61.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Elmquist JK, Bjorbaek C, Ahima RS, Flier JS, Saper CB. Distributions of leptin receptor mRNA isoforms in the rat brain. J Comp Neurol. 1998;395:535–47.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Elmquist JK, Elias CF, Saper CB. From lesions to leptin: hypothalamic control of food intake and body weight. Neuron. 1999;22:221–32.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Fan W, Ellacott KL, Halatchev IG, Takahashi K, Yu P, Cone RD. Cholecystokinin-mediated suppression of feeding involves the brainstem melanocortin system. Nat Neurosci. 2004;4:335–6.CrossRefGoogle Scholar
  25. Farooqi IS, Jebb S, Langmack G, Lawrence E, Cheetham CH, Prentice AM, Hughes IA, McCamish MA, O’Rahilly S. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med. 1999;341:879–84.PubMedCrossRefGoogle Scholar
  26. Fei H, Okano HJ, Li C, Lee GH, Zhao C, Darnell R, Friedman JM. Anatomic localization of alternatively spliced leptin receptors (Ob-R) in mouse brain and other tissues. Proc Natl Acad Sci U S A. 1997;94:7001–5.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Gibbs J, Young RC, Smith GP. Cholecystokinin decreases food intake in rats. J Comp Physiol Psychol. 1973;84:488–95.PubMedCrossRefGoogle Scholar
  28. Hay DL, Chen S, Lutz TA, Parkes DG, Roth JD. Amylin: pharmacology, physiology, and clinical potential. Pharmacol Rev. 2015;67:564–600.PubMedCrossRefGoogle Scholar
  29. Hervey GR. The effects of lesions in the hypothalamus in parabiotic rats. J Physiol. 1959;145:336–52.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Hetherington AW, Ranson SW. Hypothalamic lesions and adiposity in the rat. Anat Rec. 1940;78:149–72.CrossRefGoogle Scholar
  31. Hinney A, Schmidt A, Nottebom K, Heibült O, Becker I, Ziegler A, Gerber G, Sina M, Görg T, Mayer H, Siegfried W, Fichter M, Remschmidt H, Hebebrand J. Several mutations in the melanocortin-4 receptor gene including a nonsense and a frameshift mutation associated with dominantly inherited obesity in humans. J Clin Endocrinol Metab. 1999;84:1483–6.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Iwasaki Y, Yada T. Vagal afferents sense meal-associated gastrointestinal and pancreatic hormones: mechanism and physiological role. Neuropeptides. 2012;46:291–7.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Kakei M, Yada T, Nakagawa A, Nakabayashi H. Glucagon-like peptide-1 evokes action potentials and increases cytosolic Ca2+ in rat nodose ganglion neurons. Auton Neurosci. 2002;102:39–44.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Kennedy GC. The hypothalamic control of food intake in rats. Proc R Soc Lond B Biol Sci. 1950;137:535–49.PubMedCrossRefGoogle Scholar
  35. Kim JD, Leyva S, Diano S. Hormonal regulation of the hypothalamic melanocortin system. Front Physiol. 2014;5:480.PubMedPubMedCentralGoogle Scholar
  36. King BM. The rise, fall, and resurrection of the ventromedial hypothalamus in the regulation of feeding behavior and body weight. Physiol Behav. 2006;87:221–44.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Kissileff HR, Pi-Sunyer FX, Thornton J, Smith GP. C-terminal octapeptide of cholecystokinin decreases food intake in man. Am J Clin Nutr. 1981;34:154–60.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Koda S, Date Y, Murakami N, Shimbara T, Hanada T, Toshinai K, Niijima A, Furuya M, Inomata N, Osuye K, Nakazato M. The role of the vagal nerve in peripheral PYY3-36-induced feeding reduction in rats. Endocrinology. 2005;146:2369–75.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402:656–60.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Krashes MJ, Koda S, Ye C, Rogan SC, Adams AC, Cusher DS, Maratos-Flier E, Roth BL, Lowell BB. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J Clin Invest. 2011;121:1424–8.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Krude H, Biebermann H, Luck W, Horn R, Brabant G, Grüters A. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet. 1998;19:155–7.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Lee PC, Dixon JB. Food for thought: reward mechanisms and hedonic overeating in obesity. Curr Obes Rep. 2017.Google Scholar
  43. Lo CM, Samuelson LC, Chambers JB, King A, Heiman J, Jandacek RJ, Sakai RR, Benoit SC, Raybould HE, Woods SC, Tso P. Characterization of mice lacking the gene for cholecystokinin. Am J Phys Regul Integr Comp Phys. 2008;294:R803–10.Google Scholar
  44. Lutz TA, Geary N, Szabady MM, Del Prete E, Scharrer E. Amylin decreases meal size in rats. Physiol Behav. 1995;58:1197–202.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Lutz TA, Mollet A, Rushing PA, Riediger T, Scharrer E. The anorectic effect of a chronic peripheral infusion of amylin is abolished in area postrema/nucleus of the solitary tract (AP/NTS) lesioned rats. Int J Obes Relat Metab Disord. 2001;25:1005–11.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Mayer J. Regulation of energy intake and the body weight. The glucostatic and lipostatic hypothesis. Ann N Y Acad Sci. 1955;63:14–42.CrossRefGoogle Scholar
  47. McFarlane MR, Brown MS, Goldstein JL, Zhao TJ. Induced ablation of ghrelin cells in adult mice does not decrease food intake, body weight, or response to high-fat diet. Cell Metab. 2014;20:54–60.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Mercer JG, Hoggard N, Williams LM, Lawrence CB, Hannah LT, Trayhurn P. Localization of leptin receptor mRNA and the long form splice variant (Ob-Rb) in mouse hypothalamus and adjacent brain regions by in situ hybridization. FEBS Lett. 1996;387:113–6.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Merchenthaler I, Lane M, Shughrue P. Distribution of pre-pro-glucagon and glucagon-like peptide-1 receptor messenger RNAs in the rat central nervous system. J Comp Neurol. 1999;403:261–80.PubMedCrossRefPubMedCentralGoogle Scholar
  50. Mollet A, Gilg S, Riediger T, Lutz TA. Infusion of the amylin antagonist AC 187 into the area postrema increases food intake in rats. Physiol Behav. 2004;81:149–55.PubMedCrossRefGoogle Scholar
  51. Morton GJ, Meek TH, Schwartz MW. Neurobiology of food intake in health and disease. Nat Rev Neurosci. 2014;15:367–78.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Munzberg H, Morrison CD. Structure, production and signaling of leptin. Metabolism. 2015;64:13–23.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Nakazato M, Murakami N, Date Y, Kojima M, Matsuo H, Kangawa K, Matsukura S. A role for ghrelin in the central regulation of feeding. Nature. 2001;409:194–8.PubMedCrossRefGoogle Scholar
  54. Neel JV. Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”? Am J Hum Genet. 1962;14:353–62.PubMedPubMedCentralGoogle Scholar
  55. Ozcan L, Ergin AS, Lu A, Chung J, Sarkar S, Nie D, Myers MG Jr, Ozcan U. Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metab. 2009;9:35–51.PubMedCrossRefPubMedCentralGoogle Scholar
  56. Park H-K, Ahima RS. Physiology of leptin: energy homeostasis, neuroendocrine functions and metabolism. Metabolism. 2015;64:24–34.PubMedCrossRefPubMedCentralGoogle Scholar
  57. Perry B, Wang Y. Appetite regulation and weight control: the role of gut hormones. Nutr Diabetes. 2012;2:e26.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Potes CS, Turek VF, Cole RL, Vu C, Roland BL, Roth JD, Riediger T, Lutz TA. Noradrenergic neurons of the area postrema mediate amylin’s hypophagic action. Am J Phys Regul Integr Comp Phys. 2010;299:R623–31.Google Scholar
  59. Punjabi M, Arnold M, Rüttimann E, Graber M, Geary N, Pacheco-López G, Langhans W. Circulating glucagon-like peptide-1 (GLP-1) inhibits eating in male rats by acting in the hindbrain and without inducing avoidance. Endocrinology. 2014;155:1690–9.PubMedCrossRefPubMedCentralGoogle Scholar
  60. Reidelberger RD, Haver AC, Arnelo U, Smith DD, Schaffert CS, Permert J. Amylin receptor blockade stimulates food intake in rats. Am J Phys Regul Integr Comp Phys. 2004;287:R568–74.Google Scholar
  61. Sainsbury A, Shi YC, Zhang L, Aljanova A, Lin Z, Nguyen AD, Herzog H, Lin S. Y4 receptors and pancreatic polypeptide regulate food intake via hypothalamic orexin and brain-derived neurotropic factor dependent pathways. Neuropeptides. 2010;44:261–8.PubMedCrossRefPubMedCentralGoogle Scholar
  62. Schwartz MW, Seeley RJ, Campfield LA, Burn P, Baskin DG. Identification of targets of leptin action in rat hypothalamus. J Clin Invest. 1996;98:1101–6.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Sellayah D, Cagampang FR, Cox RD. On the evolutionary origins of obesity: a new hypothesis. Endocrinology. 2014;155:1573–88.PubMedCrossRefPubMedCentralGoogle Scholar
  64. Sheng M, Greenberg ME. The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron. 1990;4:477–85.PubMedCrossRefPubMedCentralGoogle Scholar
  65. Smith GP, Epstein AN. Increased feeding in response to decreased glucose utilization in rat and monkey. Am J Phys. 1969;217:1083–7.Google Scholar
  66. Spreckley E, Murphy KG. The L-cell in nutritional sensing and the regulation of appetite. Front Nutr. 2015;2:23.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Stellar E. The physiology of motivation. Psychol Rev. 1954;61:5–22.PubMedCrossRefPubMedCentralGoogle Scholar
  68. Suzuki K, Simpson KA, Minnion JS, Shillito JC, Bloom SR. The role of gut hormones and the hypothalamus in appetite regulation. Endocr J. 2010;57:359–72.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Talsania T, Anini Y, Siu S, Drucker DJ, Brubaker PL. Peripheral exendin-4 and peptide YY(3-36) synergistically reduce food intake through different mechanisms in mice. Endocrinology. 2005;146:3748–56.PubMedCrossRefGoogle Scholar
  70. Tartaglia LA, Dembski M, Weng X, Deng N, Culpepper J, Devos R, Richards GJ, Campfield LA, Clark FT, Deeds J, Muir C, Sanker S, Moriarty A, Moore KJ, Smutko JS, Mays GG, Wool EA, Monroe CA, Tepper RI. Identification and expression cloning of a leptin receptor, OB-R. Cell. 1995;83:1263–71.PubMedCrossRefPubMedCentralGoogle Scholar
  71. Tschöp M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature. 2000;407:908–13.PubMedCrossRefPubMedCentralGoogle Scholar
  72. Villanueva EC, Mayers MG Jr. Leptin receptor signaling and the regulation of mammalian physiology. Int J Obes. 2008;32(Suppl. 7):S8–S12.CrossRefGoogle Scholar
  73. Vilsbøll T, Holst JJ. Incretins, insulin secretion and type 2 diabetes mellitus. Diabetologia. 2004;47:357–66.PubMedCrossRefPubMedCentralGoogle Scholar
  74. Wang Q, Liu C, Uchida A, Chuang JC, Walker A, Liu T, Osborne-Lawrence S, Mason BL, Mosher C, Berglund ED, Elmquist JK, Zigman JM. Arcuate AgRP neurons mediate orexigenic and glucoregulatory actions of ghrelin. Mol Metab. 2013;3:64–72.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Waterson MJ, Horvath TL. Neuronal regulation of energy homeostasis: beyond the hypothalamus and feeding. Cell Metab. 2015;22:962–70.PubMedCrossRefPubMedCentralGoogle Scholar
  76. Woods SC, Lotter EC, McKay LD, Porte D Jr. Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature. 1979;282:503–5.PubMedCrossRefPubMedCentralGoogle Scholar
  77. Wren AM, Seal LJ, Cohen MA, Brynes AE, Frost GS, Murphy KG, Dhillo WS, Ghatei MA, Bloom SR. Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab. 2001;86:5992.PubMedCrossRefPubMedCentralGoogle Scholar
  78. Young AA. Brainstem sensing of meal-related signals in energy homeostasis. Neuropharmacology. 2012;63:31–45.PubMedCrossRefPubMedCentralGoogle Scholar
  79. Zhan C, Zhou J, Feng Q, Zhang JE, Lin S, Bao J, Wu P, Luo M. Acute and long-term suppression of feeding behavior by POMC neurons in the brainstem and hypothalamus, respectively. J Neurosci. 2013;33:3624–32.PubMedCrossRefGoogle Scholar
  80. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372:425–32.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Zigman JM, Jones JE, Lee CE, Saper CB, Elmquist JK. Expression of ghrelin receptor mRNA in the rat and the mouse brain. J Comp Neurol. 2006;494:528–48.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Zipf WB, O’Dorisio TM, Cataland S, Sotos J. Blunted pancreatic polypeptide responses in children with obesity of Prader-Willi syndrome. J Clin Endocrinol Metab. 1981;52:1264–6.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Experimental and Clinical MedicineMarche Polytechnic UniversityAnconaItaly
  2. 2.Department of Medical Biotechnology and Translational MedicineUniversity of MilanMilanItaly

Personalised recommendations