Advertisement

Medical Imaging for Three-Dimensional Computer-Aided Models

  • Paulo Henrique Junqueira Amorim
  • Thiago Franco de Moraes
  • Rodrigo Alvarenga Rezende
  • Jorge Vicente Lopes da Silva
  • Helio Pedrini
Reference work entry
Part of the Reference Series in Biomedical Engineering book series (RSBE)

Abstract

Technological advances in medical imaging have provided healthcare professionals with powerful resources for storing, analyzing, and visualizing three-dimensional images in a variety of diagnostic tasks. Equipments for acquiring high-quality images and computer-aided tools for image interpretation play an important role in surgical planning, disease assessment, and therapy response monitoring. This chapter presents an overview of relevant aspects related to image processing and computer graphics techniques for the construction of three-dimensional models for visualization and biofabrication.

Notes

Acknowledgments

We are grateful to São Paulo Research Foundation (FAPESP) for the Brazilian Research Institute for Neuroscience and Neurotechnology BRAINN (CEPID process 2013/07559-3) and for the Thematic Projects (Grants 2011/22749-8 and 2014/12236-1). We are thankful to Brazilian Council for Scientific and Technological Development (CNPq) for the Brazilian Institute of Biofabrication (INCT-BIOFABRIS process 2008/57860-3) and for the Regenerative Medicine grant (process 467643/2014-8) for the financial support. We also thank Otávio Henrique Junqueira Amorim for creating some of the illustrations and pictures.

References

  1. 3MF Consortium (2016a) 3MF materials and properties extension specification and reference guide. https://github.com/3mfconsortium/. Accessed May 2016
  2. 3MF Consortium (2016b) 3MF materials and properties extension specification and reference guide. http://3mf.io/wp-content/uploads/2015/04/3MFmaterialsSpec_1.0.1.pdf. Accessed May 2016
  3. 3MF Consortium (2016c) 3MF materials and properties extension specification and reference guide. http://3mf.io/wp-content/uploads/2015/04/3MFcoreSpec_1.0.1.pdf. Accessed May 2016
  4. Adams R, Bischof L (1994) Seeded region growing. IEEE Trans Pattern Anal Mach Intell 16(6):641–647CrossRefGoogle Scholar
  5. Akio D, Koide A (1991) An efficient method of triangulating equi-valued surfaces by using tetrahedral cells. IEICE Trans Inf Syst 74(1):214–224Google Scholar
  6. Amorim P, Moraes T, Silva J, Pedrini H (2015) InVesalius: an interactive rendering framework for health care support. In: Bebis G, Boyle R, Parvin B, Koracin D, Pavlidis I, Feris R, McGraw T, Elendt M, Kopper R, Ragan E, Ye Z, Weber G (eds) Lecture notes in computer science, vol 9474. Springer International Publishing, Switzerland, pp 45–54Google Scholar
  7. Andria G, Attivissimo F, Cavone G, Giaquinto N, Lanzolla A (2012) Linear filtering of 2-D wavelet coefficients for denoising ultrasound medical images. Measurement 45(7):1792–1800CrossRefGoogle Scholar
  8. Atala A, Yoo JJ (2015) Essentials of 3D biofabrication and translation. Academic, LondonGoogle Scholar
  9. Beucher S (1994) Watershed, hierarchical segmentation and waterfall algorithm. In: Mathematical morphology and its applications to image processing. Springer, Dordrecht, Netherlands, pp 69–76Google Scholar
  10. Brown LG (1992) A survey of image registration techniques. ACM Comput Surv 24(4):325–376CrossRefGoogle Scholar
  11. Bruckner S, Gröller ME (2009) Instant volume visualization using maximum intensity difference accumulation. Comput Graphics Forum 28(3):775–782CrossRefGoogle Scholar
  12. Buhmann MD (2000) Radial basis functions. Acta Numerica 2000(9):1–38CrossRefGoogle Scholar
  13. Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 6:679–698CrossRefGoogle Scholar
  14. Chua CK, Yeong WY (2014) Bioprinting: principles and applications, vol 1. World Scientific Publishing Co Inc., SingaporeGoogle Scholar
  15. Crum WR, Hartkens T, Hill D (2014) Non-rigid image registration: theory and practice. Br J Radiol 77:S140–S153CrossRefGoogle Scholar
  16. Csèbfalvi B, Mroz L, Hauser H, König A, Gröller ME (2001) Fast visualization of object contours by non-photorealistic volume rendering. Comput Graphics Forum 20:452–460CrossRefGoogle Scholar
  17. Danilevicius P, Rezende RA, Pereira FD, Selimis A, Kasyanov V, Noritomi PY, Silva JV, Chatzinikolaidou M, Farsari M, Mironov V (2015) Burr-like, laser-made 3D microscaffolds for tissue spheroid encagement. Biointerphases 10(2):021011PubMedCrossRefGoogle Scholar
  18. de Moraes TF, Amorim PH, Silva JV, Pedrini H, Meurer MI (2015) Medical vlume rendering based on gradient information. In: Computational vision and medical image processing V: 5th eccomas thematic conference on computational vision and medical image processing, p 181, Tenerife, Spain. CRC PressGoogle Scholar
  19. Derby B (2012) Printing and prototyping of tissues and scaffolds. Science 338(6109):921–926CrossRefGoogle Scholar
  20. Dowsett D, Kenny PA, Johnston RE (2006) The physics of diagnostic imaging. A Hodder Arnold Publication. Taylor & FrancisGoogle Scholar
  21. Fernando R (2004) GPU gems: programming techniques, tips and tricks for real-time graphics. Pearson Higher Education, LondonGoogle Scholar
  22. Giacomo G, Silva J, Martines R, Ajzen S (2014) Computer-designed selective laser sintering surgical guide and immediate loading dental implants with definitive prosthesis in edentulous patient: a preliminary method. European Journal of Dentistry 8(1):100–106PubMedPubMedCentralCrossRefGoogle Scholar
  23. Gibson SFF (1999) Constrained elastic surfacenets: generating smooth models from binary segmented data. TR99 24. Mitsubishi Electric Research Laboratories, Inc., CambridgeGoogle Scholar
  24. Gonzalez RC, Woods RE (2002) Digital image processing. Prentice Hall, Inc., Upper Saddle RiverGoogle Scholar
  25. Groll J, Boland T, Blunk T, Burdick JA, Cho D-W, Dalton PD, Derby B, Forgacs G, Li Q, Mironov VA et al (2016) Biofabrication: reappraising the definition of an evolving field. Biofabrication 8(1)CrossRefGoogle Scholar
  26. Guillemot F, Souquet A, Catros S, Guillotin B (2010) Laser-assisted cell printing: principle, physical parameters versus cell fate and perspectives in tissue engineering. Nanomedicine 5(3):507–515PubMedCrossRefGoogle Scholar
  27. Haralick RM, Shapiro LG (1985) Image segmentation techniques. Comput Vis Graphics Image Process 29(1):100–132CrossRefGoogle Scholar
  28. Hickethier T, Kröger JR, Von Spiczak J, Baessler B, Pfister R, Maintz D, Bunck AC, Michels G (2016) Non-invasive imaging of bioresorbable coronary scaffolds using CT and MRI: first in vitro experience. Int J Cardiol 206:101–106PubMedCrossRefGoogle Scholar
  29. Hill DL, Batchelor PG, Holden M, Hawkes DJ (2001) Medical image registration. Phys Med Biol 46(3)PubMedCrossRefGoogle Scholar
  30. Hsieh J (2003) Computed tomography: principles, design, artifacts, and recent advances. SPIE PressGoogle Scholar
  31. ISO/ASTM 52915 (2013) Standard specification for additive manufacturing file format (AMF). ASTM International, West ConshohockenGoogle Scholar
  32. Jakab K, Norotte C, Damon B, Marga F, Neagu A, Besch-Williford CL, Kachurin A, Church KH, Park H, Mironov V (2008) Tissue engineering by self-assembly of cells printed into topologically defined structures. Tissue Eng A 14(3):413–421CrossRefGoogle Scholar
  33. Kapila S (2014) Cone beam computed tomography in orthodontics: indications, insights, and innovations. Wiley, New YorkGoogle Scholar
  34. Kelsey CA, Heintz PH, Chambers GD, Sandoval DJ, Paffett NLAKS (2013) Radiation biology of medical imaging. Wiley, HobokenGoogle Scholar
  35. Kemmoku D, Noritomi P, Toland F, Silva J (2010) Use of BioCAD in the development of a growth compliant prosthetic device for cranioplasty of growing patients. In: Innovative developments in design and manufacturing. Taylor & Francis, London, pp 127–130Google Scholar
  36. Kim TK, Paik JK, Kang BS (1998) Contrast enhancement system using spatially adaptive histogram equalization with temporal filtering. IEEE Trans Consum Electron 44(1):82–87CrossRefGoogle Scholar
  37. Kłodowski K, Nowicka K, Tarasiuk J, Wroński S, Świketek M, B-lazewicz M, Figiel H, Turek K, Szponder T (2014) Micro-imaging of implanted scaffolds using combined MRI and micro-CT. Comput Med Imaging Graph 38(6):458–468PubMedCrossRefGoogle Scholar
  38. Lantada AD (2016) Microsystems for enhanced control of cell behavior. In: Lantada AD (ed) Studies in mechanobiology, tissue engineering and biomaterials, vol 18. Springer International Publishing, BerlinGoogle Scholar
  39. Leondes CT (2005) Medical imaging systems technology: modalities, Medical imaging systems technology. World Scientific, HackensackGoogle Scholar
  40. Lester H, Arridge SR (1999) A survey of hierarchical non-linear medical image registration. Pattern Recogn 32(1):129–149CrossRefGoogle Scholar
  41. Levoy M (1990) Efficient ray tracing of volume data. ACM Trans Graph 9(3):245–261CrossRefGoogle Scholar
  42. Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. Comput Graph 21(4):163–169CrossRefGoogle Scholar
  43. Lutz H, Buscarini E, W. H. Organization (2011) Manual of diagnostic ultrasound, vol 1. World Health Organization, GenevaGoogle Scholar
  44. Macovski A (1983) Medical imaging systems. Prentice Hall, Englewood CliffsGoogle Scholar
  45. Maintz JA, Viergever MA (1998) A survey of medical image registration. Med Image Anal 2(1):1–36PubMedCrossRefGoogle Scholar
  46. Manjón JV, Carbonell-Caballero J, Lull JJ, García-Martí G, Martí-Bonmatí L, Robles M (2008) MRI denoising using non-local means. Med Image Anal 12(4):514–523PubMedCrossRefGoogle Scholar
  47. Melchels FP, Domingos MA, Klein TJ, Malda J, Bartolo PJ, Hutmacher DW (2012) Additive manufacturing of tissues and organs. Prog Polym Sci 37(8):1079–1104CrossRefGoogle Scholar
  48. Michailovich OV, Tannenbaum A (2006) Despeckling of medical ultrasound images. IEEE Trans Ultrason Ferroelectr Freq Control 53(1):64–78PubMedPubMedCentralCrossRefGoogle Scholar
  49. Mironov V, Kasyanov V, Drake C, Markwald RR (2008) Organ printing: promises and challenges. Regen Med 3(1):93–103CrossRefGoogle Scholar
  50. Mironov V, Kasyanov V, Markwald RR (2011) Organ printing: from bioprinter to organ biofabrication line. Curr Opin Biotechnol 22(5):667–673CrossRefGoogle Scholar
  51. Mistelbauer G, Morar A, Varchola A, Schernthaner R, Baclija I, Köchl A, Kanitsar A, Bruckner S, Gröller E (2013) Vessel visualization using curvicircular feature aggregation. Comput Graphics Forum 32(3):231–240CrossRefGoogle Scholar
  52. Moench T, Gasteiger R, Janiga G, Theisel H, Preim B (2011) Context-aware mesh smoothing for biomedical applications. Comput Graph 35(4):755–767CrossRefGoogle Scholar
  53. Mohebi MM, Evans JR (2002) A drop-on-demand ink-jet printer for combinatorial libraries and functionally graded ceramics. J Comb Chem 4(4):267–274PubMedCrossRefGoogle Scholar
  54. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785PubMedPubMedCentralCrossRefGoogle Scholar
  55. Naganuma T, Ishiguro H, Takagi K, Fujino Y, Mitomo S, Nakamura S, Nakamura S, Colombo A (2015) Provisional T-stenting with bioresorbable vascular scaffolds in vivo: insights from optical frequency domain imaging. J Am Coll Cardiol Intv 8(4):635–637CrossRefGoogle Scholar
  56. Oliveira AT, Camilo AA, Bahia PRV, Carvalho ACP, Santos MF, Silva JVL, Monteiro AA (2014) A novel method for intraoral access to the superior head of the human lateral pterygoid muscle. Biomed Res Int 2014:1–8Google Scholar
  57. Oosterwijk H, Gihring P (2002) Dicom basics. OTech Inc, AubreyGoogle Scholar
  58. Ozbolat I, Gudapati H (2016) A review on design for bioprinting. Bioprinting 3:1–14CrossRefGoogle Scholar
  59. Ozbolat IT, Peng W, Ozbolat V (2016) Application areas of 3D bioprinting. Drug Discov Today 21(8):1257–1271CrossRefGoogle Scholar
  60. Pal NR, Pal SK (1993) A review on image segmentation techniques. Pattern Recogn 26(9):1277–1294CrossRefGoogle Scholar
  61. Parker JR (2010) Algorithms for image processing and computer vision. Wiley, IndianapolisGoogle Scholar
  62. Passamai V, Dernowsek J, Nogueira J, Lara V, Vilalba F, Mironov V, Rezende R, Silva J (2016) From 3D bioprinters to a fully integrated organ biofabrication line. J Phys Conf Ser 705:012010CrossRefGoogle Scholar
  63. Pianykh OS (2009) Digital imaging and communications in medicine (DICOM): a practical introduction and survival Guide. Springer, Berlin/HeidelbergGoogle Scholar
  64. Rezende RA, Pereira FD, Kasyanov V, Ovsianikov A, Torgensen J, Gruber P, Stampfl J, Brakke K, Nogueira JA, Mironov V, Silva JV (2012) Design, physical prototyping and initial characterisation of ‘lockyballs’. Virtual Phys Prototyping 7(4):287–301CrossRefGoogle Scholar
  65. Rezende RA, Kasyanov V, Mironov V, Silva JVL (2015) Organ printing as an information technology. Procedia Eng 110:151–158CrossRefGoogle Scholar
  66. Roth SD (1982) Ray casting for modeling solids. Comput Graphics Image Process 18(2):109–144CrossRefGoogle Scholar
  67. Russ JC (2015) The image processing handbook. CRC Press, New YorkGoogle Scholar
  68. Salinas HM, Fernández DC (2007) Comparison of PDE-based nonlinear diffusion approaches for image enhancement and denoising in optical coherence tomography. IEEE Trans Med Imaging 26(6):761–771PubMedCrossRefGoogle Scholar
  69. Sankur B, Sezgin M (2001) Image thresholding techniques: a Survey over categories. Pattern Recogn 34(2):1573–1583Google Scholar
  70. Sannomiya EK, Silva JVL, Brito AA, Saez DM, Angelieri F, Silva Dalben G (2008) Surgical planning for resection of an ameloblastoma and reconstruction of the mandible using a selective laser sintering 3D biomodel. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 106(1):36–40CrossRefGoogle Scholar
  71. Silva J, Almeida A, Raposo do Amaral C, Ferreira D, Hotta L, Raposo do Amaral CA, Guidi M, Buzzo CL (2009) Three-dimensional virtual and physical technologies in the treatment of craniofacial anomalies. In: 11th international congress on cleft lip and palate related craniofacial anomalies, vol 1, pp 5–10, Bologna, Medmond ItalyGoogle Scholar
  72. Singh S, Bovis K (2005) An evaluation of contrast enhancement techniques for mammographic breast masses. IEEE Trans Inf Technol Biomed 9(1):109–119PubMedCrossRefGoogle Scholar
  73. Sistrom CL, McKay NL (2005) Costs, charges, and revenues for hospital diagnostic imaging procedures: differences by modality and hospital characteristics. J Am Coll Radiol 2(6):511–519PubMedCrossRefGoogle Scholar
  74. Skardal A, Zhang J, McCoard L, Xu X, Oottamasathien S, Prestwich GD (2010) Photocrosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting. Tissue Eng A 16(8):2675–2685CrossRefGoogle Scholar
  75. Stallings W (2005) Data and computer communications. Prentice Hall, Upper Saddle RiverGoogle Scholar
  76. Stark JA (2000) Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Trans Image Process 9(5):889–896PubMedCrossRefGoogle Scholar
  77. Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. In: Sixth international conference on computer vision, IEEE, pp 839–846Google Scholar
  78. Wahl RL, Wagner HN (2009) Principles and practice of PET and PET/CT. Lippincott Williams & WilkinsGoogle Scholar
  79. Whitaker RT (2000) Reducing aliasing artifacts in iso-surfaces of binary volumes. In: IEEE symposium on volume visualization, IEEE, pp 23–32Google Scholar
  80. Wu Q, Merchant F, Castleman KR (2008) Microscope image processing, 1st edn. Academic, BostonGoogle Scholar
  81. Wu C, Wang B, Zhang C, Wysk RA, Chen Y-W (2017) Bioprinting: an assessment based on manufacturing readiness levels. Crit Rev Biotechnol 37(3):333–354PubMedCrossRefGoogle Scholar
  82. Zhang YJ (1996) A survey on evaluation methods for image segmentation. Pattern Recogn 29(8):1335–1346CrossRefGoogle Scholar
  83. Zitova B, Flusser J (2003) Image registration methods: a Survey. Image Vis Comput 21(11):977–1000CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Paulo Henrique Junqueira Amorim
    • 1
  • Thiago Franco de Moraes
    • 1
  • Rodrigo Alvarenga Rezende
    • 1
  • Jorge Vicente Lopes da Silva
    • 1
  • Helio Pedrini
    • 2
  1. 1.Division of 3D TechnologiesCenter for Information Technology Renato ArcherCampinasBrazil
  2. 2.Institute of ComputingUniversity of CampinasCampinasBrazil

Personalised recommendations