Advertisement

Bioceramics for Musculoskeletal Regenerative Medicine: Materials and Manufacturing Process Compatibility for Synthetic Bone Grafts and Medical Devices

  • Ciro A. Rodriguez
  • Hernan Lara-Padilla
  • David Dean
Reference work entry
Part of the Reference Series in Biomedical Engineering book series (RSBE)

Abstract

This chapter is focused on bioceramics for musculoskeletal regenerative medicine, with emphasis on material and manufacturing compatibility in the development of synthetic bone grafts. Bioceramics are classified into families depending on their relative bioactivity: passive, bioactive, and bioresorbable. Passive bioceramics, such as alumina and zirconia, are mainly used for load-bearing implants. Bioactive ceramics, such as bioactive glass, are useful to generate a strong bond between metallic surfaces and bone. Bioresorbable ceramics are applied to bone void filling and scaffolds for synthetic grafts. A description of bioceramics and their use in manufacturing processes is given, with major emphasis on techniques that may be useful in the fabrication of regenerative devices such as synthetic bone grafts. The manufacturing processes of interest are classified into molding, additive manufacturing, and coating techniques. The use of bioceramic-based scaffolds in bone repair animal models and clinical studies is reviewed. Finally, this chapter provides an outlook of future research directions for improved bioceramic use in synthetic bone grafts or regenerative skeletal devices.

Keywords

Additive manufacturing Calcium phosphate Alumina Zirconia Bioactive glass Bioglass Hydroxyapatite Tricalcium phosphate Bone Skeleton Vertebra (spine) Hip Knee Joint replacement (arthroplasty) Reconstructive surgery Dental implant 

Notes

Acknowledgments

The authors acknowledge partial support from the Army, Navy, NIH, Air Force, VA, and Health Affairs to support the AFIRM II effort under award No. W81XWH-14-2-0004. The US Army Medical Research Acquisition Activity is the awarding and administering acquisition office for award No. W81XWH-14-2-0004. Partial support was also provided by a Third Frontier (State of Ohio) Technology Validation and Startup Fund (TVSF) grant #15-791 grant, CONACyT grant #DCI from the Government of Mexico to Hernan Lara Padilla, and CONACyT #grant #274867 from the Mexican Government to Ciro A. Rodriguez.

Glossary

3DP

Inkjet printing (type of additive manufacturing process)

BCP

Biphasic calcium phosphate

BG

Bioactive glass

CaP

Calcium phosphate

CSF

Calcium sulfate (CaSO4)

DCS

Dicalcium silicate (Ca2SiO4)

DIW

Direct ink writing/robocasting (type of additive manufacturing process)

DLP

Digital light processing (type of additive manufacturing process)

DMD

Direct micromirror device (type of additive manufacturing process)

ELS

Electrospinning (type of additive manufacturing process)

FDM

Fused deposition modeling (type of additive manufacturing process)

HAP

Hydroxyapatite

LDM

Low-temperature deposition modeling (type of additive manufacturing process)

MES

Melt electrospinning (type of additive manufacturing process)

nHA

Nano-hydroxyapatite

OCP

Octacalcium phosphate (Ca8H2(PO4)6·5H2O)

PA

Polyamide

PAD

Pressure assisted dispensing (type of additive manufacturing process)

PCL

Polycaprolactone

PED

Precision extruding deposition (type of additive manufacturing process)

PLA

Polylactide acid

PLDLLA

Poly(L-lactide-co-D,L-lactide)

PPF

Poly(propylene fumarate)

SLA

Stereolithography (type of additive manufacturing process)

SLM

Selective laser melting (type of additive manufacturing process)

SLS

Selective laser sintering (type of additive manufacturing process)

Slide

In the design of injection molds, slides are moving components

Sr-HT

Sr-hardystonite (Sr-Ca2ZnSi2O7)

TCP

Tricalcium phosphate

TTCP

Tetracalcium phosphate (Ca4(PO4)2O)

References

  1. Abbah SA, Lam CXL, Hutmacher DW, Goh JCH, Wong H-K (2009) Biological performance of a polycaprolactone-based scaffold used as fusion cage device in a large animal model of spinal reconstructive surgery. Biomaterials 30:5086–5093CrossRefPubMedGoogle Scholar
  2. Agarwal R, Williams K, Umscheid CA, Welch WC (2009) Osteoinductive bone graft substitutes for lumbar fusion: a systematic review. J Neurosurg Spine 11:729–740CrossRefPubMedGoogle Scholar
  3. Almirall A, Larrecq G, Delgado J, Martınez S, Planell J, Ginebra M (2004) Fabrication of low temperature macroporous hydroxyapatite scaffolds by foaming and hydrolysis of an α-TCP paste. Biomaterials 25:3671–3680CrossRefPubMedGoogle Scholar
  4. Baradararan S, Hamdi M, Metselaar IH (2012) Biphasic calcium phosphate (BCP) macroporous scaffold with different ratios of HA/β-TCP by combination of gel casting and polymer sponge methods. Adv Appl Ceram 111:367–373CrossRefGoogle Scholar
  5. Bartolo P, Kruth J-P, Silva J, Levy G, Malshe A, Rajurkar K, Mitsuishi M, Ciurana J, Leu M (2012) Biomedical production of implants by additive electro-chemical and physical processes. CIRP Ann Manuf Technol 61:635–655CrossRefGoogle Scholar
  6. Best SM, Porter AE, Thian ES, Huang J (2008) Bioceramics: past, present and for the future. J Eur Ceram Soc 28:1319–1327CrossRefGoogle Scholar
  7. Bonda DJ, Manjila S, Selman WR, Dean D (2015) The recent revolution in the design and manufacture of cranial implants. Neurosurgery 77:814–824CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bose S, Fielding G, Tarafder S, Bandyopadhyay A (2013) Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics. Trends Biotechnol 31:594–605CrossRefPubMedGoogle Scholar
  9. Cai S, Xu GH, Yu XZ, Zhang WJ, Xiao ZY, Yao KD (2009) Fabrication and biological characteristics of β-tricalcium phosphate porous ceramic scaffolds reinforced with calcium phosphate glass. J Mater Sci Mater Med 20:351–358CrossRefPubMedGoogle Scholar
  10. Cancedda R, Giannoni P, Mastrogiacomo M (2007) A tissue engineering approach to bone repair in large animal models and in clinical practice. Biomaterials 28:4240–4250CrossRefGoogle Scholar
  11. Carter B, Norton G (2007) Ceramic Materials. Springer, New York, pp 3–6Google Scholar
  12. Champion E (2013) Sintering of calcium phosphate bioceramics. Acta Biomater 9:5855–5875CrossRefPubMedGoogle Scholar
  13. Chevalier J, Gremillard L (2009) Ceramics for medical applications: a picture for the next 20 years. J Eur Ceram Soc 29(7):1245–1255CrossRefGoogle Scholar
  14. Chiba S, Anada T, Suzuki K, Saito K, Shiwaku Y, Miyatake N, Baba K, Imaizumi H, Hosaka M, Itoi E, Suzuki O (2016) Effect of resorption rate and osteoconductivity of biodegradable calcium phosphate materials on the acquisition of natural bone strength in the repaired bone. J Biomed Mater Res A 104:2833–2842CrossRefPubMedGoogle Scholar
  15. Crowley C, Wong JM-L, Fisher DM, Khan WS (2013) A systematic review on preclinical and clinical studies on the use of scaffolds for bone repair in skeletal defects. Curr Stem Cell Res Ther 8:243–252CrossRefPubMedGoogle Scholar
  16. Dadsetan M, Guda T, Runge MB, Mijares D, Legeros RZ, Legeros JP, Silliman DT, Lu L, Wenke JC, Brown Baer PR, Yaszemski MJ (2015) Effect of calcium phosphate coating and rhBMP-2 on bone regeneration in rabbit calvaria using poly(propylene fumarate) scaffolds. Acta Biomater 18:9–20CrossRefPubMedGoogle Scholar
  17. Dai Y, Liu H, Liu B, Wang Z, Li Y, Zhou G (2015) Porous β-Ca2SiO4 ceramic scaffolds for bone tissue engineering: in vitro and in vivo characterization. Ceram Int 41:5894–5902CrossRefGoogle Scholar
  18. Deckers J, Vleugels J, Kruth JP (2014) Additive manufacturing of ceramics: a review. J Ceram Sci Technol 5:245–260Google Scholar
  19. Elomaa L, Kokkari A, Närhi T, Seppälä JV (2013) Porous 3D modeled scaffolds of bioactive glass and photocrosslinkable poly(ε-caprolactone) by stereolithography. Compos Sci Technol 74:99–106CrossRefGoogle Scholar
  20. El-Rashidy AA, Roether JA, Harhaus L, Kneser U, Boccaccini AR (2017) Regenerating bone with bioactive glass scaffolds: a review of in vivo studies in bone defect models. Acta Biomater 62:1–28CrossRefPubMedGoogle Scholar
  21. Evaluate (2015) EvaluateMedTech® – world preview 2015, Outlook to 2020. www.evaluategroup.com
  22. Felzmann R, Gruber S, Mitteramskogler G, Tesavibul P, Boccaccini AR, Liska R, Stampfl J (2012) Lithography-based additive manufacturing of cellular ceramic structures. Adv Eng Mater 14:1052–1058CrossRefGoogle Scholar
  23. Ghosh SK, Nandi SK, Kundu B, Datta S, De DK, Roy SK, Basu D (2008) In vivo response of porous hydroxyapatite and β-tricalcium phosphate prepared by aqueous solution combustion method and comparison with bioglass scaffolds. J Biomed Mater Res B Appl Biomater 86:217–227CrossRefPubMedGoogle Scholar
  24. Guo J, Meng Z, Chen G, Xie D, Chen Y, Wang H, Tang W, Liu L, Jing W, Long J, Guo W, Tian W (2012) Restoration of critical-size defects in the rabbit mandible using porous nanohydroxyapatite-polyamide scaffolds. Tissue Eng A 18:1239–1252CrossRefGoogle Scholar
  25. Habibovic P, Gbureck U, Doillon CJ, Bassett DC, van Blitterswijk CA, Barralet JE (2008) Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants. Biomaterials 29:944–953CrossRefPubMedGoogle Scholar
  26. Hannouche D, Hamadouche M, Nizard R, Bizot P, Meunier A, Sedel L (2005) Ceramics in total hip replacement. Clin Orthop Relat Res:62–71Google Scholar
  27. Hench LL (2006) The story of Bioglass®. J Mater Sci Mater Med 17:967–978CrossRefPubMedGoogle Scholar
  28. Hench LL, Wilson J (2013) Introduction. In: Hench LL (ed) An introduction to bioceramics, 2nd edn. Imperial College Press, London, pp 1–26CrossRefGoogle Scholar
  29. Hing KA, Annaz B, Saeed S, Revell PA, Buckland T (2005) Microporosity enhances bioactivity of synthetic bone graft substitutes. J Mater Sci Mater Med 16:467–475CrossRefPubMedGoogle Scholar
  30. Igawa K, Mochizuki M, Sugimori O, Shimizu K, Yamazawa K, Kawaguchi H, Nakamura K, Takato T, Nishimura R, Suzuki S, Anzai M, Chung U Il, Sasaki N (2006) Tailor-made tricalcium phosphate bone implant directly fabricated by a three-dimensional ink-jet printer. J Artif Organs 9:234–240CrossRefPubMedGoogle Scholar
  31. Inzana JA, Olvera D, Fuller SM, Kelly JP, Graeve OA, Schwarz EM, Kates SL, Awad HA (2014) 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials 35:4026–4034CrossRefPubMedPubMedCentralGoogle Scholar
  32. ISO/ASTM 52900 (2015) Additive manufacturing – general principles – terminology. ISO Central Secretariat, GenevaGoogle Scholar
  33. Jahadakbar A, Shayesteh Moghaddam N, Amerinatanzi A, Dean D, Karaca H, Elahinia M (2016) Finite element simulation and additive manufacturing of stiffness-matched NiTi fixation hardware for mandibular reconstruction surgery. Bioengineering 3:36CrossRefPubMedCentralGoogle Scholar
  34. Jaiswal AK, Dhumal RV, Ghosh S, Chaudhari P, Nemani H, Soni VP, Vanage GR, Bellare JR (2013) Bone healing evaluation of nanofibrous composite scaffolds in rat calvarial defects: a comparative study. J Biomed Nanotechnol 9:2073–2085CrossRefPubMedGoogle Scholar
  35. Jakus AE, Rutz AL, Jordan SW, Kannan A, Mitchell SM, Yun C, Koube KD, Yoo SC, Whiteley HE, Richter CP, Galiano RD (2016) Hyperelastic bone: A highly versatile, growth factor-free, osteoregenerative, scalable, and surgically friendly biomaterial. Science translational medicine 8:358CrossRefPubMedGoogle Scholar
  36. Jakus AE, Ramille S (2017) Multi and mixed 3D-printing of graphene-hydroxyapatite hybrid materials for complex tissue engineering. J Biomed Mater Res A 105:274–283CrossRefPubMedGoogle Scholar
  37. Ji W, Sun Y, Yang F, Van Den Beucken JJJP, Fan M, Chen Z, Jansen JA (2011) Bioactive electrospun scaffolds delivering growth factors and genes for tissue engineering applications. Pharm Res 28:1259–1272CrossRefPubMedGoogle Scholar
  38. Keller TS (1994) Predicting the compressive mechanical behavior of bone. J Biomech 27:1159–1168CrossRefPubMedGoogle Scholar
  39. Kelly JR, Nishimura I, Campbell SD (1996) Ceramics in dentistry: historical roots and current perspectives. J Prosthet Dent 75:18–32CrossRefPubMedGoogle Scholar
  40. Kingery WD, Bowen HK, Uhlmann DR (1976) Introduction to ceramics, 2nd edn. Wiley, New York, p 3Google Scholar
  41. Kurien T, Pearson RG, Scammell BE (2013) Bone graft substitutes currently available in orthopaedic practice: the evidence for their use. Bone Joint J 95B:583–597CrossRefGoogle Scholar
  42. Larsen M, Mishra R, Miller M, Dean D (2015) Bioprinting of bone. In: Atala A, Yoo JJ (eds) Essentials of 3D biofabrication and translation. Academic press (Elsevier), Cambridge, MA, pp 293–308CrossRefGoogle Scholar
  43. Learmonth ID, Young C, Rorabeck C (2007) The operation of the century: total hip replacement. Lancet 370:1508–1519CrossRefPubMedGoogle Scholar
  44. Li Z, Chen X, Zhao N, Dong H, Li Y, Lin C (2013) Stiff macro-porous bioactive glass-ceramic scaffold: fabrication by rapid prototyping template, characterization and in vitro bioactivity. Mater Chem Phys 141:76–80CrossRefGoogle Scholar
  45. Li Y, Chen SK, Li L, Qin L, Wang XL, Lai YX (2015) Bone defect animal models for testing efficacy of bone substitute biomaterials. J Orthop Transl 3:95–104Google Scholar
  46. Li JJ, Roohani-Esfahani S-I, Dunstan CR, Quach T, Steck R, Saifzadeh S, Pivonka P, Zreiqat H (2016) Efficacy of novel synthetic bone substitutes in the reconstruction of large segmental bone defects in sheep tibiae. Biomed Mater 11:15016CrossRefGoogle Scholar
  47. Liu Y, Lim J, Teoh SH (2013) Review: development of clinically relevant scaffolds for vascularised bone tissue engineering. Biotechnol Adv 31:688–705CrossRefPubMedGoogle Scholar
  48. Liu W-C, Robu IS, Patel R, Leu MC, Velez M, Gabriel Chu T-M (2014) The effects of 3D bioactive glass scaffolds and BMP-2 on bone formation in rat femoral critical size defects and adjacent bones. Biomed Mater 9(45013)CrossRefPubMedGoogle Scholar
  49. Lohfeld S, Cahill S, Barron V, McHugh P, Dürselen L, Kreja L, Bausewein C, Ignatius A (2012) Fabrication, mechanical and in vivo performance of polycaprolactone/tricalcium phosphate composite scaffolds. Acta Biomater 8:3446–3456CrossRefGoogle Scholar
  50. Marcacci M, Kon E, Moukhachev V, Lavroukov A, Kutepov S, Quarto R, Mastrogiacomo M, Cancedda R (2007) Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng 13:947–955CrossRefPubMedGoogle Scholar
  51. McColm IJ (2013) Dictionary of ceramic science and engineering. Springer, New York, pp 83–84CrossRefGoogle Scholar
  52. Metsger DS, Driskell TD, Paulsrud JR (1982) Tricalcium phosphate ceramic – a resorbable bone implant: review and current status. J Am Dent Assoc 105:1035–1038CrossRefPubMedGoogle Scholar
  53. Midha S, Kim TB, Van Den Bergh W, Lee PD, Jones JR, Mitchell CA (2013) Preconditioned 70S30C bioactive glass foams promote osteogenesis in vivo. Acta Biomater 9:9169–9182CrossRefPubMedGoogle Scholar
  54. Miranda P, Pajares A, Saiz E, Tomsia AP, Guiberteau F (2008) Mechanical properties of calcium phosphate scaffolds fabricated by robocasting. J Biomed Mater Res A 85:218–227CrossRefPubMedGoogle Scholar
  55. Moghaddam NS, Skoracki R, Miller M, Elahinia M, Dean D (2016a) Three dimensional printing of stiffness-tuned, nitinol skeletal fixation hardware with an example of mandibular segmental defect repair. Procedia CIRP 49:45–50CrossRefGoogle Scholar
  56. Moghaddam N, Jahadakbar A, Amerinatanzi A, Elahinia M, Miller M, Dean D (2016b) Metallic fixation of mandibular segmental defects. Plast Reconstr Surg Glob Open 4:e858CrossRefGoogle Scholar
  57. Muller B, Reseland JE, Haugen HJ, Tiainen H (2015) Cell growth on pore-graded biomimetic TiO2 bone scaffolds. J Biomater Appl 29:1284–1295CrossRefPubMedGoogle Scholar
  58. Nandi SK, Kundu B, Datta S, De DK, Basu D (2009) The repair of segmental bone defects with porous bioglass: an experimental study in goat. Res Vet Sci 86:162–173CrossRefPubMedGoogle Scholar
  59. Nie L, Chen D, Fu J, Yang S, Hou R, Suo J (2015) Macroporous biphasic calcium phosphate scaffolds reinforced by poly-L-lactic acid/hydroxyapatite nanocomposite coatings for bone regeneration. Biochem Eng J 98:29–37CrossRefGoogle Scholar
  60. Obregon F, Vaquette C, Ivanovski S, Hutmacher DW, Bertassoni LE (2015) Three-dimensional bioprinting for regenerative dentistry and craniofacial tissue engineering. J Dent Res 94:143S–152SCrossRefPubMedGoogle Scholar
  61. Paderni S, Terzi S, Amendola L (2009) Major bone defect treatment with an osteoconductive bone substitute. Musculoskelet Surg 93:89–96CrossRefGoogle Scholar
  62. Park HJ, Min KD, Lee MC, Kim SH, Lee OJ, Ju HW, Moon BM, Lee JM, Park YR, Kim DW, Jeong JY, Park CH (2016) Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction. J Biomed Mater Res A:1779–1787CrossRefPubMedGoogle Scholar
  63. Pati F, Jang J, Lee JW, Cho D-W (2015) Extrusion bioprinting. In: Atala A, Yoo JJ (eds) Essentials of 3D biofabrication and translation. Academic, Boston, pp 123–152CrossRefGoogle Scholar
  64. Pearce AI, Richards RG, Milz S, Schneider E, Pearce SG (2007) Animal models for implant biomaterial research in bone: a review. Eur Cells Mater 13:1–10CrossRefGoogle Scholar
  65. Piconi C, Maccauro G (1999) Zirconia as a ceramic biomaterial. Biomaterials 20:1–25CrossRefPubMedGoogle Scholar
  66. Pilipchuk SP, Plonka AB, Monje A, Taut AD, Lanis A, Kang B, Giannobile WV (2015) Tissue engineering for bone regeneration and osseointegration in the oral cavity. Dent Mater 31:317–338CrossRefPubMedPubMedCentralGoogle Scholar
  67. Policastro GM, Lin F, Smith Callahan LA, Esterle A, Graham M, Stakleff KS, Becker ML (2015) OGP functionalized phenylalanine-based poly(ester urea) for enhancing osteoinductive potential of human mesenchymal stem cells. Biomacromolecules 16:1358–1371CrossRefPubMedGoogle Scholar
  68. Pountos I, Giannoudis PV (2016) Is there a role of coral bone substitutes in bone repair? Injury 47:2606–2613CrossRefPubMedGoogle Scholar
  69. Qiu K, Chen B, Nie W, Zhou X, Feng W, Wang W, Chen L, Mo X, Wei Y, He C (2016) Electrophoretic deposition of dexamethasone-loaded mesoporous silica nanoparticles onto poly(l-lactic acid)/poly(ε-caprolactone) composite scaffold for bone tissue engineering. ACS Appl Mater Interfaces 8:4137–4148CrossRefPubMedGoogle Scholar
  70. Quarto R, Mastrogiacomo M, Cancedda R, Kutepov SM, Mukhachev V, Lavroukov A, Kon E, Marcacci M (2001) Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 344:385–386CrossRefPubMedGoogle Scholar
  71. Raman R, Bashir R (2015) Stereolithographic 3D bioprinting for biomedical applications. In: Atala A, Yoo JJ (eds) Essentials of 3D biofabrication and translation. Academic press (Elsevier), Cambridge, MA, pp 89–121CrossRefGoogle Scholar
  72. Reichert JC, Wullschleger ME, Cipitria A, Lienau J, Cheng TK, Schütz MA, Duda GN, Nöth U, Eulert J, Hutmacher DW (2011) Custom-made composite scaffolds for segmental defect repair in long bones. Int Orthop 35:1229–1236CrossRefPubMedGoogle Scholar
  73. Ren J, Blackwood KA, Doustgani A, Poh PP, Steck R, Stevens MM, Woodruff MA (2014) Melt-electrospun polycaprolactone strontium-substituted bioactive glass scaffolds for bone regeneration. J Biomed Mater Res A 102:3140–3153CrossRefPubMedGoogle Scholar
  74. Schmitz JP, Hollinger JO (1986) The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Relat Res 205:299–308Google Scholar
  75. Semlitsch M, Lehmann M, Weber H, Doerre E, Willert HG (1977) New prospects for a prolonged functional lifespan of artificial hip joints by using the material combination polyethylene/aluminium oxide ceramic/metal. J Biomed Mater Res 11:537–552CrossRefPubMedGoogle Scholar
  76. Shao H, He Y, Fu J, He D, Yang X, Xie J, Yao C, Ye J, Xu S, Gou Z (2016) 3D printing magnesium-doped wollastonite/β-TCP bioceramics scaffolds with high strength and adjustable degradation. J Eur Ceram Soc 36:1495–1503CrossRefGoogle Scholar
  77. Shrivats AR, Alvarez P, Schutte L, Hollinger JO (2014) Bone regeneration. In: Principles of tissue engineering. Elsevier, San Diego, pp 1201–1221CrossRefGoogle Scholar
  78. Sing SL, Yeong WY, Wiria FE, Tay BY, Zhao Z, Zhao L, Tian Z, Yang S (2017) Direct selective laser sintering and melting of ceramics: a review. Rapid Prototyp J 23:611–623CrossRefGoogle Scholar
  79. Sun M, Liu A, Shao H, Yang X, Ma C, Yan S, Liu Y, He Y, Gou Z (2016) Systematical evaluation of mechanically strong 3d printed diluted magnesium doping wollastonite scaffolds on osteogenic capacity in rabbit calvarial defects. Sci Rep 6:34029CrossRefPubMedPubMedCentralGoogle Scholar
  80. Tamjid E, Simchi A (2015) Fabrication of a highly ordered hierarchically designed porous nanocomposite via indirect 3D printing: mechanical properties and in vitro cell responses. Mater Des 88:924–931CrossRefGoogle Scholar
  81. Tang W, Policastro GM, Hua G, Guo K, Zhou J, Wesdemiotis C, Doll GL, Becker ML (2014) Bioactive surface modification of metal oxides via catechol-bearing modular peptides: multivalent-binding, surface retention, and peptide bioactivity. J Am Chem Soc 136:16357–16367CrossRefPubMedGoogle Scholar
  82. Tang W, Lin D, Yu Y, Niu H, Guo H, Yuan Y, Liu C (2016) Bioinspired trimodal macro/micro/nano-porous scaffolds loading rhBMP-2 for complete regeneration of critical size bone defect. Acta Biomater 32:309–323CrossRefPubMedGoogle Scholar
  83. Tarafder S, Balla VK, Davies NM, Bandyopadhyay A, Bose S (2013) Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering. J Tissue Eng Regen Med 7:631–641CrossRefGoogle Scholar
  84. Tesavibul P, Felzmann R, Gruber S, Liska R, Thompson I, Boccaccini AR, Stampfl J (2012) Processing of 45S5 Bioglass® by lithography-based additive manufacturing. Mater Lett 74:81–84CrossRefGoogle Scholar
  85. Vivanco J, Aiyangar A, Araneda A, Ploeg HL (2012) Mechanical characterization of injection-molded macro porous bioceramic bone scaffolds. J Mech Behav Biomed Mater 9:137–152CrossRefPubMedGoogle Scholar
  86. Wang H, Li Y, Zuo Y, Li J, Ma S, Cheng L (2007) Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Biomaterials 28:3338–3348CrossRefPubMedGoogle Scholar
  87. Woodruff MA, Lange C, Reichert J, Berner A, Chen F, Fratzl P, Schantz JT, Hutmacher DW (2012) Bone tissue engineering: from bench to bedside. Mater Today 15:430–435CrossRefGoogle Scholar
  88. Xu Y, Luong D, Walker JM, Dean D, Becker ML (2017) Modification of poly (propylene fumarate) – bioglass composites with peptide conjugates to enhance bioactivity. Biomacromolecules 18:3168–3177CrossRefPubMedGoogle Scholar
  89. Yuan H, Fernandes H, Habibovic P, de Boer J, Barradas AMC, de Ruiter A, Walsh WR, van Blitterswijk CA, de Bruijn JD (2010) Osteoinductive ceramics as a synthetic alternative to autologous bone grafting. Proc Natl Acad Sci USA 107:13614–13619CrossRefPubMedGoogle Scholar
  90. Zanchetta E, Cattaldo M, Franchin G, Schwentenwein M, Homa J, Brusatin G, Colombo P (2016) Stereolithography of SiOC ceramic microcomponents. Adv Mater 28:370–376CrossRefPubMedGoogle Scholar
  91. Zhang J, Liu H, Ding J-X, Wu J, Zhuang X-L, Chen X-S, Wang J-C, Yin J-B, Li Z-M (2016) High-pressure compression-molded porous resorbable polymer/hydroxyapatite composite scaffold for cranial bone regeneration. ACS Biomater Sci Eng 2:1471–1482CrossRefGoogle Scholar
  92. Zhou C, Ye X, Fan Y, Ma L, Tan Y, Qing F, Zhang X (2014) Biomimetic fabrication of a three-level hierarchical calcium phosphate/collagen/hydroxyapatite scaffold for bone tissue engineering. Biofabrication 6:35013CrossRefGoogle Scholar
  93. Zocca A, Colombo P, Gomes CM, Günster J (2015) Additive manufacturing of ceramics: issues, potentialities, and opportunities. J Am Ceram Soc 98:1983–2001CrossRefGoogle Scholar
  94. Zoetis T, Tassinari MS, Bagi C, Walthall K, Hurtt ME (2003) Species comparison of postnatal bone growth and development. Birth Defects Res B Dev Reprod Toxicol 68:86–110CrossRefPubMedGoogle Scholar
  95. Zreiqat H, Ramaswamy Y, Wu C, Paschalidis A, Lu Z, James B, Birke O, McDonald M, Little D, Dunstan CR (2010) The incorporation of strontium and zinc into a calcium-silicon ceramic for bone tissue engineering. Biomaterials 31:3175–3184CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ciro A. Rodriguez
    • 1
  • Hernan Lara-Padilla
    • 2
  • David Dean
    • 3
  1. 1.Escuela de Ingeniería y CienciasTecnológico de MonterreyMonterreyMexico
  2. 2.Departamento de Ciencias de la Energía y MecánicaUniversidad de las Fuerzas Armadas ESPESangolquíEcuador
  3. 3.Department of Plastic SurgeryThe Ohio State UniversityColumbusUSA

Personalised recommendations