Advertisement

Commercial 3D Bioprinters

  • Frederico David A. S. Pereira
  • Vladislav Parfenov
  • Yusef D. Khesuani
  • Aleksandr Ovsianikov
  • Vladimir Mironov
Reference work entry
Part of the Reference Series in Biomedical Engineering book series (RSBE)

Abstract

The bioprinters are robotic devices, which enable 3D bioprinting. In this chapter, we provide classification of already existing commercially available 3D bioprinters and outline basic principles of their construction and functionalities. The emerging trends in the design and development of 3D bioprinters, perspectives of creation of new types of commercial 3D bioprinters based on new physical principles, including in situ bioprinters, as well as completely integrated organ biofabrication lines or “human organ factories” will be also discussed.

Keywords

3D Bioprinters Ink-jet bioprinting Extrusion-based bioprinting Laser-based bioprinting In situ bioprinting Organ biofabrication line 

References

  1. Albrecht DR, Sah RL, Bhatia SN (2004) Geometric and material determinants of patterning efficiency by dielectrophoresis. Biophys J 87(4):2131–2147CrossRefPubMedPubMedCentralGoogle Scholar
  2. Arai K, Iwanaga S, Toda H, Genci C, Nishiyama Y, Nakamura M (2011) Three-dimensional inkjet biofabrication based on designed images. Biofabrication 3(3):034113CrossRefPubMedGoogle Scholar
  3. Atala A, Yoo JJ (eds) (2015) Essentials of 3D Biofabrication and translation. Academic Press, Boston. 440 pagesGoogle Scholar
  4. Basu S, Rodionov V, Terasaki M, Campagnola PJ (2005) Multiphoton-excited microfabrication in live cells via rose Bengal cross-linking of cytoplasmic proteins. Opt Lett 30(2):159–161CrossRefPubMedGoogle Scholar
  5. Boland T, Xu T, Damon B, Cui X (2006) Application of inkjet printing to tissue engineering. Biotechnol J 1(9):910–917CrossRefPubMedGoogle Scholar
  6. Bouyer C, Chen P, Güven S, Demirtaş TT, Nieland TJ, Padilla F, Demirci U (2016) A bio-acoustic Levitational (BAL) assembly method for engineering of multilayered, 3D brain-like constructs, using human embryonic stem cell derived neuro-progenitors. Adv Mater 28(1):161–167CrossRefPubMedGoogle Scholar
  7. Bulanova EA, Koudan EV, Degosserie J, Heymans C, Pereira FD, Parfenov VA, Sun Y, Wang Q, Akhmedova SA, Sviridova IK, Sergeeva NS, Frank GA, Khesuani YD, Pierreux CE, Mironov VA (2017) Bioprinting of a functional vascularized mouse thyroid gland construct. Biofabrication 9(3):034105CrossRefPubMedGoogle Scholar
  8. Chan V, Zorlutuna P, Jeong JH, Kong H, Bashir R (2010) Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation. Lab Chip 10(16):2062–2070CrossRefPubMedGoogle Scholar
  9. Chua CK, Yeong WY (2015) Bioprinting: principles and applications. World Scientific Publishing, Singapore. 296 pagesCrossRefGoogle Scholar
  10. Cooke MN, Fisher JP, Dean D, Rimnac C, Mikos AG (2003) Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth. J Biomed Mater Res B Appl Biomater 64(2):65–69CrossRefPubMedPubMedCentralGoogle Scholar
  11. Derby B (2012) Printing and prototyping of tissues and scaffolds. Science 338(6109):921–926CrossRefPubMedGoogle Scholar
  12. Durmus NG, Tekin HC, Guven S, Sridhar K, Arslan Yildiz A, Calibasi G, Ghiran I, Davis RW, Steinmetz LM, Demirci U (2015) Magnetic levitation of single cells. Proc Natl Acad Sci USA 112(28):E3661–E3668CrossRefPubMedGoogle Scholar
  13. Gutzweiler L, Kartmann S, Troendle K, Benning L, Finkenzeller G, Zengerle R, Koltay P, Stark GB, Zimmermann S (2017) Large scale production and controlled deposition of single HUVEC spheroids for bioprinting applications. Biofabrication 9(2):025027CrossRefPubMedGoogle Scholar
  14. Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A (2016) A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol 34(3):312–319CrossRefGoogle Scholar
  15. Klebe RJ (1987) Apparatus for the precise positioning of cells. US patent 5,108,926 A, 8 Sept 1987Google Scholar
  16. Klebe RJ (1988) Cytoscribing: a method for micropositioning cells and the construction of two- and three-dimensional synthetic tissues. Exp Cell Res 179(2):362–373CrossRefGoogle Scholar
  17. Klopsch C, Gäbel R, Kaminski A, Mark P, Wang W, Toelk A, Delyagina E, Kleiner G, Koch L, Chichkov B, Mela P, Jockenhoevel S, Ma N, Steinhoff G (2015) Spray- and laser-assisted biomaterial processing for fast and efficient autologous cell-plus-matrix tissue engineering. J Tissue Eng Regen Med 9(12):E177–E190CrossRefPubMedGoogle Scholar
  18. Landers R, Hübner U, Schmelzeisen R, Mülhaupt R (2002) Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials 23(23):4437–4447CrossRefPubMedGoogle Scholar
  19. Lee J-S, Pati F, Jung JW (2015) Organ printing. Morgan & Claypool, San Rafael. 92 pagesGoogle Scholar
  20. Lin RZ, Ho CT, Liu CH, Chang HY (2006) Dielectrophoresis based-cell patterning for tissue engineering. Biotechnol J 1(9):949–957CrossRefPubMedGoogle Scholar
  21. Linnenberger A, Bodine MI, Fiedler C, Roberts JJ, Skaalure SC, Quinn JP, Bryant SJ, Cole M, McLeod RR (2013) Three dimensional live cell lithography. Opt Express 21(8):10269–10277CrossRefPubMedGoogle Scholar
  22. Ma X, Qu X, Zhu W, Li YS, Yuan S, Zhang H, Liu J, Wang P, Lai CS, Zanella F, Feng GS, Sheikh F, Chien S, Chen S (2016) Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc Natl Acad Sci U S A 113(8):2206–2211CrossRefPubMedPubMedCentralGoogle Scholar
  23. Mandrycky C, Wang Z, Kim K, Kim DH (2016) 3D bioprinting for engineering complex tissues. Biotechnol Adv 34(4):422–434CrossRefGoogle Scholar
  24. Mekhileri NV, Lim K, Brown GCJ, Mutreja I, Schon BS, Hooper GJ, Woodfield TBF (2018) Automated 3D bioassembly of micro-tissues for biofabrication of hybrid tissue engineered constructs. Biofabrication. 10(2):024103.  https://doi.org/10.1088/1758-5090/aa9ef1. PubMed PMID: 29199637CrossRefPubMedGoogle Scholar
  25. Melchels FPW, Domingos MAN, Klein TJ, Malda J, Bartolo P, Hutmacher D (2012) Additive manufacturing of tissues and organs. Prog Polym Sci 37(31):1079–1104CrossRefGoogle Scholar
  26. Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR (2003) Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol 21(4):157–161CrossRefPubMedPubMedCentralGoogle Scholar
  27. Mironov V, Kasyanov V, Drake C, Markwald RR (2008) Organ printing: promises and challenges. Regen Med 3(1):93–103CrossRefPubMedGoogle Scholar
  28. Mironov V, Trusk T, Kasyanov V, Little S, Swaja R, Markwald R (2009a) Biofabrication: a 21st century manufacturing paradigm. Biofabrication 1(2):022001.  https://doi.org/10.1088/1758-5082/1/2/022001CrossRefPubMedGoogle Scholar
  29. Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ, Markwald RR (2009b) Organ printing: tissue spheroids as building blocks. Biomaterials 30(12):2164–2174CrossRefPubMedPubMedCentralGoogle Scholar
  30. Mironov V, Kasyanov V, Markwald RR (2011) Organ printing: from bioprinter to organ biofabrication line. Curr Opin Biotechnol 22(5):667–673CrossRefGoogle Scholar
  31. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785CrossRefGoogle Scholar
  32. O'Connell CD, Di Bella C, Thompson F, Augustine C, Beirne S, Cornock R, Richards CJ, Chung J, Gambhir S, Yue Z, Bourke J, Zhang B, Taylor A, Quigley A, Kapsa R, Choong P, Wallace GG (2016) Development of the Biopen: a handheld device for surgical printing of adipose stem cells at a chondral wound site. Biofabrication 8(1):015019CrossRefPubMedGoogle Scholar
  33. Odde DJ, Renn MJ (1999) Laser-guided direct writing for applications in biotechnology. Trends Biotechnol 17(10):385–389CrossRefPubMedGoogle Scholar
  34. Ovsianikov A, Mironov V, Stampf J, Liska R (2012) Engineering 3D cell-culture matrices: multiphoton processing technologies for biological and tissue engineering applications. Expert Rev Med Devices 9(6):613–633CrossRefPubMedGoogle Scholar
  35. Owens CM, Marga F, Forgacs G, Biofabrication HCM (2013) Testing of a fully cellular nerve graft. Biofabrication 5(4):045007CrossRefPubMedPubMedCentralGoogle Scholar
  36. Ozbolat IT (2016) 3D Bioprinting: fundamentals, principles and applications. Academic Press, Boston. 356 pagesGoogle Scholar
  37. Pereira RF, Barrias CC, Granja PL, Bartolo PJ (2013) Advanced biofabrication strategies for skin regeneration and repair. Nanomedicine (Lond) 8(4):603–621CrossRefGoogle Scholar
  38. Qin XH, Aleksandr Ovsianikov A, Stampfl J, Liska R (2014) Additive manufacturing of photosensitive hydrogels for tissue engineering applications. BioNanoMat 15(3-4):49–70CrossRefGoogle Scholar
  39. Ringeisen BR, Spargo BJ, Wu PK (eds) (2010) Cell and organ printing. Springer, Dordrecht. 260 pagesGoogle Scholar
  40. Saunders RE, Gough JE, Derby B (2008) Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing. Biomaterials 29(2):193–203CrossRefPubMedGoogle Scholar
  41. Schuurman W, Khristov V, Pot MW, van Weeren PR, Dhert WJ, Malda J (2011) Bioprinting of hybrid tissue constructs with tailorable mechanical properties. Biofabrication 3(2):021001CrossRefGoogle Scholar
  42. Tarassoli SP, Jessop ZM, Al-Sabah A, Gao N, Whitaker S, Doak S, Whitaker IS (2017) Skin tissue engineering using 3D bioprinting: an evolving research field. J Plast Reconstr Aesthet Surg. pii: S1748-6815(17)30505-3.  https://doi.org/10.1016/j.bjps.2017.12.006. [Epub ahead of print] Review. PubMed PMID: 29306639
  43. Tasoglu S, Yu CH, Liaudanskaya V, Guven S, Migliaresi C, Demirci U (2015) Magnetic Levitational assembly for living material fabrication. Adv Healthc Mater 4(10):1469–1476CrossRefPubMedPubMedCentralGoogle Scholar
  44. Tocchio A, Durmus NG, Sridhar K, Mani V, Coskun B, El Assal R, Demirci U (2018) Magnetically guided self-assembly and coding of 3D living architectures. Adv Mater 30(4):1705034CrossRefGoogle Scholar
  45. Tromayer M, Gruber P, Markovic M, Rosspeintner A, Vauthey E, Redl H, Ovsianikov A, Liska RA (2017) Biocompatible macromolecular two-photon initiator based on hyaluronan. Polym Chem 8(2):451–460CrossRefPubMedGoogle Scholar
  46. Wilson WC Jr, Boland T (2003) Cell and organ printing 1: protein and cell printers. Anat Rec A Discov Mol Cell Evol Biol 272(2):491–496CrossRefPubMedGoogle Scholar
  47. Yanagi Y, Nakayama K, Taguchi T, Enosawa S, Tamura T, Yoshimaru K, Matsuura T, Hayashida M, Kohashi K, Oda Y, Yamaza T, Kobayashi E (2017) In vivo and ex vivo methods of growing a liver bud through tissue connection. Sci Rep 7(1):14085CrossRefPubMedPubMedCentralGoogle Scholar
  48. Zein I, Hutmacher DW, Tan KC, Teoh SH (2002) Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23(4):1169–1185CrossRefPubMedGoogle Scholar
  49. Zhang LG, Fisher JP, Leong K (eds) (2015) 3D Bioprinting and nanotechnology in tissue engineering and regenerative medicine. Academic Press, Boston. 392 pagesGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Frederico David A. S. Pereira
    • 1
  • Vladislav Parfenov
    • 1
  • Yusef D. Khesuani
    • 2
    • 5
  • Aleksandr Ovsianikov
    • 3
  • Vladimir Mironov
    • 4
    • 6
  1. 1.The Laboratory of Biotechnological Research3D Bioprinting SolutionsMoscowRussia
  2. 2.Vivax Bio, LLCNew YorkUSA
  3. 3.Institute of Materials Science and TechnologyTechnische Universität Wien (TU Wien)ViennaAustria
  4. 4.3D Bioprinting Solutions (3D Bio)The Laboratory of Biotechnological ResearchMoscowRussia
  5. 5.The Laboratory of Biotechnological Research3D Bioprinting SolutionsMoscowRussian Federation
  6. 6.Institute for Regenerative MedicineSechenov Medical UniversityMoscowRussia

Personalised recommendations