• Simona Zampetti
  • Raffaella BuzzettiEmail author
Reference work entry
Part of the Endocrinology book series (ENDOCR)


The term latent autoimmune diabetes of the adult (LADA) has been introduced to define the subgroup of adult type 2 diabetes (T2DM) patients who are initially noninsulin requiring but with immune markers of type 1 diabetes (T1DM).

The prevalence of LADA has been estimated in a number of multicenter studies of both European and non-European populations. Around 4–14% of patients classified with T2DM have diabetes associated autoantibodies. Among these autoantibodies, glutamic acid decarboxylase (GAD) has become the main islet autoantibody for LADA screening and the most sensitive autoimmune marker for LADA diagnosis.

It remains to be clarified whether LADA exists as a distinct disease entity or it just represents the end of a wide spectrum of the heterogeneous immune-mediated diabetes. Uncertainties concern almost all aspects of this disease, including the nomenclature, diagnostic criteria, epidemiology, natural history, and pathogenesis with genetic, metabolic, and immunological aspects.

A number of attractive therapeutic interventions may be envisaged for prevention of beta-cell loss in LADA, including hypoglycemic and immunomodulatory agents. Since the autoimmune process in LADA seems to be slower than in T1DM, there is a wider window of opportunities for intervention.


LADA NIRAD Islet autoantibodies GADA GADA titer T1DM T2DM Insulin Immunotherapy 


  1. Aaen K, Rygaard J, Josefsen K, Petersen H, Brogren CH, Horn T, Buschard K. Dependence of antigen expression on functional state of beta-cells. Diabetes. 1990;39(6):697–701.PubMedCrossRefGoogle Scholar
  2. Adeleye OO, Ogbera AO, Fasanmade O, Ogunleye OO, Dada AO, Ale AO, Abatan FM. Latent autoimmune diabetes mellitus in adults (LADA) and it’s characteristics in a subset of Nigerians initiallymanaged for type 2 diabetes. Int Arch Med. 2012;5(1):23.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Agardh CD, Cilio CM, Lethagen A, Lynch K, Leslie RD, Palmér M, Harris RA, Robertson JA, Lernmark A. Clinical evidence for the safety of GAD65 immunomodulation in adult onset autoimmune diabetes. J Diabetes Complicat. 2005;19(4):238–46.PubMedCrossRefGoogle Scholar
  4. Aggarwal S, Goel A, Jain A. Role of C-peptide in identification of patients suspected of having latent autoimmune diabetes in adults (LADA) in north Indian type 2 diabetes mellitus population. Int J Pharm Biosci. 2010;1:3.Google Scholar
  5. Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med. 1998;15(7):539–53.PubMedCrossRefGoogle Scholar
  6. Andersen MK, Lundgren V, Turunen JA, et al. Latent autoimmune diabetes in adults differs genetically from classical T1DM diagnosed after the age of 35 years. Diabetes Care. 2010;33:2062–4.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Andersen MK, Sterner M, Forsén T, Käräjämäki A, Rolandsson O, Forsblom C, Groop PH, Lahti K, Nilsson PM, Groop L, Tuomi T. Type 2 diabetes susceptibility gene variants predispose to adult-onset autoimmune diabetes. Diabetologia. 2014;57(9):1859–68.PubMedCrossRefGoogle Scholar
  8. Argoud GM, Schade DS, Eaton RP. Insulin suppresses its own secretion in vivo. Diabetes. 1987;36(8):959–62.PubMedCrossRefGoogle Scholar
  9. Arikan E, Sabuncu T, Ozer EM, Hatemi H. The clinical characteristics of latent autoimmune diabetes in adults and its relation with chronic complications in metabolically poor controlled Turkish patients with type 2 diabetes mellitus. J Diabetes Complicat. 2005;19:254–8.PubMedCrossRefGoogle Scholar
  10. Atkinson MA, Eisenbarth GS. Type 1 diabetes: new perspectives on disease pathogenesis and treatment. Lancet. 2001;358:221–9.PubMedCrossRefGoogle Scholar
  11. Barinas-Mitchell E, Pietropaolo S, Zhang YJ, Henderson T, Trucco M, Kuller LH, Pietropaolo M. Islet cell autoimmunity in a triethnic adult population of the Third National Health and Nutrition Examination Survey. Diabetes. 2004;53(5):1293–302.PubMedCrossRefGoogle Scholar
  12. Birk OS, Elias D, Weiss AS, Rosen A, Van-der Zee R, Walker MD, Cohen IR. NOD mouse diabetes: the ubiquitous mouse hsp60 is a beta-cell target antigen of autoimmune T cells. J Autoimmun. 1996;9(2):159–66.PubMedCrossRefGoogle Scholar
  13. Björk E, Kämpe O, Andersson A, Karlsson FA. Expression of the 64 kDa/glutamic acid decarboxylase rat islet cell autoantigen is influenced by the rate of insulin secretion. Diabetologia. 1992;35(5):490–3.PubMedCrossRefGoogle Scholar
  14. Bonifacio E, Lampasona V, Genovese S, Ferrari M, Bosi E. Identification of protein tyrosine phosphatase-like (islet cell antigen 512) as the insulindependent diabetes-related 37/40K autoantigen and a target of islet-cell antibodies. J Immunol. 1995;155(11):5419–26.PubMedGoogle Scholar
  15. Borg H, Gottsäter A, Fernlund P, Sundkvist G. A 12-year prospective study of the relationship between islet antibodies and beta-cell function at and after the diagnosis in patients with adult-onset diabetes. Diabetes. 2002;51(6):1754–62.PubMedCrossRefGoogle Scholar
  16. Bottazzo GF, Florin-Christensen A, Doniach D. Islet-cell antibodies in diabetes mellitus with autoimmune polyendocrine deficiencies. Lancet. 1974;2(7892):1279–82.PubMedCrossRefGoogle Scholar
  17. Bottazzo GF, Bosi E, Cull CA, Bonifacio E, Locatelli M, Zimmet P, Mackay IR, Holman RR. IA-2 antibody prevalence and risk assessment of early insulin requirement in subjects presenting with type 2 diabetes (UKPDS 71). Diabetologia. 2005;48(4):703–8.PubMedCrossRefGoogle Scholar
  18. Bottini N, Musumeci L, Alonso A, Rahmouni S, Nika K, Rostamkhani M, Mac-Murray J, Meloni GF, Lucarelli P, Pellecchia M, Eisenbarth GS, Comings D, Mustelin T. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet. 2004;36:337–8.PubMedCrossRefGoogle Scholar
  19. Brooks-Worrell BM, Juneja R, Minokadeh A, Greenbaum CJ, Palmer JP. Cellular immune responses to human islet proteins in antibody-positive type 2 diabetic patients. Diabetes. 1999;48(5):983–8.PubMedCrossRefGoogle Scholar
  20. Brophy S, Yderstraede K, Mauricio D, Hunter S, Hawa M, Pozzilli P, Schernthaner G, Schloot N, Buzzetti R, Davies H, Leslie D, Williams R, Action LADA Group. Time to insulin initiation cannot be used in defining latent autoimmune diabetes in adults. Diabetes Care. 2008;31(3):439–41.PubMedCrossRefGoogle Scholar
  21. Buzzetti R, Galgani A, Petrone A, Del Buono ML, Erlich HA, Bugawan TL, Lorini R, Meschi F, Multari G, Pozzilli P, Locatelli M, Bottazzo G, Di Mario U. Genetic prediction of T1DM in a population with low frequency of HLA risk genotypes and low incidence of the disease (the DIABFIN study). Diabetes Metab Res Rev. 2004;20(2):137–43.PubMedCrossRefGoogle Scholar
  22. Buzzetti R, Di Pietro S, Giaccari A, Petrone A, Locatelli M, Suraci C, Capizzi M, Arpi ML, Bazzigaluppi E, Dotta F, Bosi E, Non Insulin Requiring Autoimmune Diabetes Study Group. High titer of autoantibodies to GAD identifies a specific phenotype of adult-onset autoimmune diabetes. Diabetes Care. 2007;30(4):932–8.PubMedCrossRefGoogle Scholar
  23. Buzzetti R, Spoletini M, Zampetti S, Campagna G, Marandola L, Panimolle F, Dotta F, Tiberti C, NIRAD Study Group (NIRAD 8). Tyrosine phosphatase-related islet antigen 2(256–760) autoantibodies, the only marker of islet autoimmunity that increases by increasing the degree of BMI in obese subjects with type 2 diabetes. Diabetes Care. 2015a;38(3):513–20.PubMedCrossRefGoogle Scholar
  24. Buzzetti R, Pozzilli P, Frederich R, Iqbal N, Hirshberg B. Saxagliptin improves glycaemic control and C-peptide secretion in latent autoimmune diabetes in adults (LADA). Diabetes Metab Res Rev. 2016;32(3):298–96.PubMedCrossRefGoogle Scholar
  25. Cabrera-Rode E, Perich P, Diaz-Horta O, Tiberti C, Molina G, Arranz C, Martin JM, Licea M, De Leiva AD, Puig-Domingo M, Di Mario U. Slowly progressing type 1 diabetes: persistence of islet cell autoantibodies is related to glibenclamide treatment. Autoimmunity. 2002;35(7):469–74.PubMedCrossRefGoogle Scholar
  26. Campbell-Thompson M, Fu A, Kaddis JS, Wasserfall C, Schatz DA, Pugliese A, Atkinson MA. Insulitis and β-cell mass in the natural history of type 1 diabetes. Diabetes. 2016;65(3):719–31.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Carlsson S, Midthjell K, Grill V. Influence of family history of diabetes on incidence and prevalence of latent autoimmune diabetes of the adult: results from the Nord-Trøndelag Health Study. Diabetes Care. 2007a;30(12):3040–5.PubMedCrossRefGoogle Scholar
  28. Carlsson S, Midthjell K, Tesfamarian MY, Grill V. Age, overweight and physical inactivity increase the risk of latent autoimmune diabetes in adults: results from the Nord-Trøndelag Health Study. Diabetologia. 2007b;50(1):55–8.PubMedCrossRefGoogle Scholar
  29. Carlsson S, Midthjell K, Grill V. LADA (latent autoimmune diabetes in adults) in Norway – occurrence, risk factors, treatment and complications. Nor Epidemiol. 2013;23(1):39–44.Google Scholar
  30. Cernea S, Buzzetti R, Pozzilli P. Beta-cell protection and therapy for latent autoimmune diabetes in adults. Diabetes Care. 2009;32(Suppl 2):S246–52.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Cervin C, Lyssenko V, Bakhtadze E, et al. Genetic similarities between latent autoimmune diabetes in adults, type 1 diabetes, and type 2 diabetes. Diabetes. 2008;57(5):1433–7.PubMedGoogle Scholar
  32. Chatenoud L, Bluestone J. CD3-specific antibodies: a portal to the treatment of autoimmunity. Nat Rev Immunol. 2007;7:622–32.PubMedCrossRefGoogle Scholar
  33. Cnop M, Welsh N, Jonas JC, Jörns A, Lenzen S, Eizirik DL. Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes. 2005;54(Suppl 2):S97–107.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Davis TM, Wright AD, Mehta ZM, Cull CA, Stratton IM, Bottazzo GF, Bosi E, Mackay IR, Holman RR. Islet autoantibodies in clinically diagnosed type 2 diabetes: prevalence and relationship with metabolic control (UKPDS 70). Diabetologia. 2005;48(4):695–702.PubMedCrossRefGoogle Scholar
  35. Deng C, Xiang Y, Tan T, Ren Z, Cao C, Huang G, Wen L, Zhou Z. Altered peripheral B-lymphoctye subsets in T1DM and latent autoimmune diabetes in adults. Diabetes Care. 2016;39(3):434–40.Google Scholar
  36. Desai M, Zeggini E, Horton VA, Owen KR, Hattersley AT, Levy JC, Hitman GA, Walker M, Holman RR, McCarthy MI, Clark A. The variable number of tandem repeats upstream of the insulin gene is a susceptibility locus for latent autoimmune diabetes in adults. Diabetes. 2006;55(6):1890–4.PubMedCrossRefGoogle Scholar
  37. Desai M, Zeggini E, Horton VA, Owen KR, Hattersley AT, Levy JC, Walker M, Gillespie KM, Bingley PJ, Hitman GA, Holman RR, McCarthy MI, Clark A. An association analysis of the HLA gene region in latent autoimmune diabetes in adults. Diabetologia. 2007;50(1):68–73.PubMedCrossRefGoogle Scholar
  38. Donath MY, Schumann DM, Faulenbach M, Ellingsgaard H, Perren A, Ehses JA. Islet inflammation in type 2 diabetes. Diabetes Care. 2008;31(Suppl 2):S161–4.PubMedCrossRefGoogle Scholar
  39. Dong F, Yang G, Pan HW, Huang WH, Jing LP, Liang WK, Zhang N, Zhang BH, Wang M, Liu Y, Zhang LJ, Zhang SH, Li H, Chen C, Nie LH, Jing CX. The association of PTPN22 rs2476601 polymorphism and CTLA-4 rs231775 polymorphism with LADA risks: a systematic review and meta-analysis. Acta Diabetol. 2014;51(5):691–703.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Dowse GK, Zimmet PZ, Spark RA, Mavo B, Rowley MJ, Mackay IR. Lack of antibodies to glutamic acid decarboxylase in young adults of the high diabetes prevalence Wanigela people of Papua New Guinea. Diabetes Res Clin Pract. 1994;24(3):195–8.PubMedCrossRefGoogle Scholar
  41. Dupre J. Glycaemic effects of incretins in T1DM mellitus: a concise review, with emphasis on studies in humans. Regul Pept. 2005;128(2):149–57.PubMedCrossRefGoogle Scholar
  42. Falorni A, Brozzetti A. Diabetes-related antibodies in adult diabetic patients. Best Pract Res Clin Endocrinol Metab. 2005;19(1):119–33.PubMedCrossRefGoogle Scholar
  43. Falorni A, Calcinaro F. Autoantibody profile and epitope mapping in latent autoimmune diabetes in adults. Ann N Y Acad Sci. 2002;958:99–106.PubMedCrossRefGoogle Scholar
  44. Field LL. Genetic linkage and association studies of type 1 diabetes: challenges and rewards. Diabetologia. 2002;45:21–35.PubMedCrossRefGoogle Scholar
  45. Finegood DT, McArthur MD, Kojwang D, Thomas MJ, Topp BG, Leonard T, Buckingham RE. Beta-cell mass dynamics in Zucker diabetic fatty rats: rosiglitazone prevents the rise in net cell death. Diabetes. 2001;50(5):1021–9.PubMedCrossRefGoogle Scholar
  46. Fourlanos S, Dotta F, Greenbaum CJ, Palmer JP, Rolandsson O, Colman PG, Harrison LC. Latent autoimmune diabetes in adults (LADA) should be less latent. Diabetologia. 2005;48(11):2206–12.PubMedCrossRefGoogle Scholar
  47. Fourlanos S, Perry C, Stein MS, Stankovich J, Harrison LC, Colman PG. A clinical screening tool identifies autoimmune diabetes in adults. Diabetes Care. 2006;29(5):970–5.PubMedCrossRefGoogle Scholar
  48. Füchtenbusch M, Kredel K, Bonifacio E, Schnell O, Ziegler AG. Exposure to exogenous insulin promotes IgG1 and the T-helper 2-associated IgG4 responses to insulin but not to other islet autoantigens. Diabetes. 2000;49(6):918–25.PubMedCrossRefGoogle Scholar
  49. Gale EA. Latent autoimmune diabetes in adults: a guide for the perplexed. Diabetologia. 2005;48(11):2195–9.PubMedCrossRefGoogle Scholar
  50. Gautier JF, Fetita S, Sobngwi E, Salaün-Martin C. Biological actions of the incretins GIP and GLP-1 and therapeutic perspectives in patients with type 2 diabetes. Diabetes Metab. 2005;31(3):233–42.PubMedCrossRefGoogle Scholar
  51. Genovese S, Bazzigaluppi E, Gonçalves D, Ciucci A, Cavallo MG, Purrello F, Anello M, Rotella CM, Bardini G, Vaccaro O, Riccardi G, Travaglini P, Morenghi E, Bosi E, Pozzilli P. Clinical phenotype and β-cell autoimmunity in Italian patients with adult-onset diabetes. Eur J Endocrinol. 2006;154(3):441–7.PubMedCrossRefGoogle Scholar
  52. Ghanaat-Pour H, Sjöholm A. Gene expression regulated by pioglitazone and exenatide in normal and diabetic rat islets exposed to lipotoxicity. Diabetes Metab Res Rev. 2009;25(2):163–84.PubMedCrossRefGoogle Scholar
  53. Guglielmi C, Palermo A, Pozzilli P. Latent autoimmune diabetes in the adults (LADA) in Asia: from pathogenesis and epidemiology to therapy. Diabetes Metab Res Rev. 2012;28(Suppl 2):40–6.PubMedCrossRefGoogle Scholar
  54. Hampe CS, Kockum I, Landin-Olsson M, Törn C, Ortqvist E, Persson B, Rolandsson O, Palmer J, Lernmark A. GAD65 antibody epitope patterns of patients with type 1.5 differ from that of T1DM patients. Diabetes Care. 2002;25(8):1481–2.PubMedCrossRefGoogle Scholar
  55. Hampe CS, Hall TR, Agren A, Rolandsson O. Longitudinal changes in epitope recognition of autoantibodies against glutamate decarboxylase 65 (GAD65Ab) in prediabetic adults developing diabetes. Clin Exp Immunol. 2007;148(1):72–8.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Hawa MI, Kolb H, Schloot N, Beyan H, Paschou SA, Buzzetti R, Mauricio D, De Leiva A, Yderstraede K, Beck-Neilsen H, Tuomilehto J, Sarti C, Thivolet C, Hadden D, Hunter S, Schernthaner G, Scherbaum WA, Williams R, Brophy S, Pozzilli P, Leslie RD, Action LADA Consortium. Adult-onset autoimmune diabetes in Europe is prevalent with a broad clinical phenotype: Action LADA 7. Diabetes Care. 2013;36(4):908–13.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Hawa MI, Buchan AP, Ola T, Wun CC, DeMicco DA, Bao W, Betteridge DJ, Durrington PN, Fuller JH, Neil HA, Colhoun H, Leslie RD, Hitman G. LADA and CARDS: a prospective study of clinical outcome in established adult-onset autoimmune diabetes. Diabetes Care. 2014;37(6):1643–9.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Herold KC, Hagopian W, Auger JA, Poumian-Ruiz E, Taylor L, Donaldson D, Gitelman SE, Harlan DM, Xu D, Zivin RA, Bluestone JA. Anti-CD3 monoclonal antibody in new-onset T1DM mellitus. N Engl J Med. 2002;346(22):1692–8.PubMedCrossRefGoogle Scholar
  59. Hillman M, Törn C, Thorgeirsson H, Landin-Olsson M. IgG4-subclass of glutamic acid decarboxylase antibody is more frequent in latent autoimmune diabetes in adults than in type 1 diabetes. Diabetologia. 2004;47(11):1984–9.PubMedCrossRefGoogle Scholar
  60. Holloway AC, Petrik JJ, Bruin JE, Gerstein HC. Rosiglitazone prevents diabetes by increasing beta-cell mass in an animal model of type 2 diabetes characterized by reduced beta-cell mass at birth. Diabetes Obes Metab. 2008;10(9):763–71.PubMedCrossRefGoogle Scholar
  61. Horton V, Stratton I, Bottazzo GF, Shattock M, Mackay I, Zimmet P, Manley S, Holman R, Turner R. Genetic heterogeneity of autoimmune diabetes: age of presentation in adults is influenced by HLA DRB1 and DQB1 genotypes (UKPDS 43). Diabetologia. 1999;42:608–16.PubMedCrossRefGoogle Scholar
  62. Hosszufalusi N, Vatay A, Rajczy K, Prohaszka Z, Pozsonyi E, Horvath L, Grosz A, Gero L, Madacsy L, Romics L, Karadi I, Fust G, Panczel P. Similar genetic features and different islet cell autoantibody pattern of latent autoimmune diabetes in adults (LADA) compared with adult-onset T1DM with rapid progression. Diabetes Care. 2003;26(2):452–7.PubMedCrossRefGoogle Scholar
  63. Irvine WJ, Gray RS, McCallum CJ, Duncan LJP. Clinical and pathogenic significance of pancreatic-islet-cell antibodies in diabetics treated with oral hypoglycaemic agents. Lancet. 1977;1(8020):1025–7.PubMedCrossRefGoogle Scholar
  64. Isomaa B, Tuomi T, Almgren P, Groop L, Henricsson M, Sarelin M. Chronic complications in patients with slowly progressing autoimmune type 1 diabetes (LADA). Diabetes Care. 1999;22:1347–53.PubMedCrossRefGoogle Scholar
  65. Itariu BK, Stulnig TM. Autoimmune aspects of type 2 diabetes mellitus – a mini-review. Gerontology. 2014;60(3):189–96.PubMedCrossRefGoogle Scholar
  66. Jansen A, Rosmalen JG, Homo-Delarche F, Dardenne M, Drexhage HA. Effect of prophylactic insulin treatment on the number of ER-MP23+ macrophages in the pancreas of NOD mice: is the prevention of diabetes based on beta-cell rest? J Autoimmun. 1996;9(3):341–8.PubMedCrossRefGoogle Scholar
  67. Johansen OE, Boehm BO, Grill V, Torjesen PA, Bhattacharya S, Patel S, Wetzel K, Woerle HJ. C-peptide levels in latent autoimmune diabetes in adults treated with linagliptin versus glimepiride: exploratory results from a 2-year double-blind, randomized, controlled study. Diabetes Care. 2014;37(1):e11–2.PubMedCrossRefGoogle Scholar
  68. Juneja R, Palmer JP. Type 1 1/2 diabetes: myth or reality? Autoimmunity. 1999;29(1):65–83.PubMedCrossRefGoogle Scholar
  69. Keymeulen B, Vandemeulebroucke E, Ziegler AG, Mathieu C, Kaufman L, Hale G, Gorus F, Goldman M, Walter M, Candon S, Schandene L, Crenier L, De Block C, Seigneurin JM, De Pauw P, Pierard D, Weets I, Rebello P, Bird P, Berrie E, Frewin M, Waldmann H, Bach JF, Pipeleers D, Chatenoud L. Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes. N Engl J Med. 2005;352(25):2598–608.PubMedCrossRefGoogle Scholar
  70. Kisand K, Uibo R. LADA and T1D in Estonian population – two different genetic risk profiles. Gene. 2012;497(2):285–91.PubMedCrossRefGoogle Scholar
  71. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, Nathan DM, Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Kobayashi T, Nakanishi K, Murase T, Kosaka K. Small doses of subcutaneous insulin as a strategy for preventing slowly progressive beta-cell failure in islet cell antibody-positive patients with clinical features of NIDDM. Diabetes. 1996;45(5):622–6.PubMedCrossRefGoogle Scholar
  73. Kobayashi T, Maruyama T, Shimada A, Kasuga A, Kanatsuka A, Takei I, Tanaka S, Yokoyama J. Insulin intervention to preserve beta cells in slowly progressive insulindependent (type 1) diabetes mellitus. Ann N Y Acad Sci. 2002;958:117–30.PubMedCrossRefGoogle Scholar
  74. Kobayashi T, Shimada A, Kanatsuka A, Kasuga A, Takei I, Yokoyama J, Kobayashi T. Multicenter prevention trial of slowly progressive IDDM with small dose of insulin (the Tokyo study). Ann N Y Acad Sci. 2003;1005:362–9.PubMedCrossRefGoogle Scholar
  75. Kolb H. Benign versus destructive insulitis. Diabetes Metab Rev. 1997;13(3):139–46.PubMedCrossRefGoogle Scholar
  76. Krause S, Landherr U, Agardh CD, Hausmann S, Link K, Hansen JM, Lynch KF, Powell M, Furmaniak J, Rees-Smith B, Bonifacio E, Ziegler AG, Lernmark A, Achenbach P. GAD autoantibody affinity in adult patients with latent autoimmune diabetes, the study participants of a GAD65 vaccination trial. Diabetes Care. 2014;37(6):1675–80.PubMedCrossRefGoogle Scholar
  77. Lampasona V, Petrone A, Tiberti C, Capizzi M, Spoletini M, Di Pietro S, Songini M, Bonicchio S, Giorgino F, Bonifacio E, Bosi E, Buzzetti R, Non Insulin Requiring Autoimmune Diabetes (NIRAD) Study Group. Zinc transporter 8 antibodies complement GAD and IA-2 antibodies in the identification and characterization of adult-onset autoimmune diabetes: Non Insulin Requiring Autoimmune Diabetes (NIRAD) 4. Diabetes Care. 2010;33(1):104–8.PubMedCrossRefGoogle Scholar
  78. Landstedt-Hallin L, Arner P, Lins PE, Bolinder J, Olsen H, Groop L. The role of sulphonylurea in combination therapy assessed in a trial of sulphonylurea withdrawal. Scandinavian Insulin-Sulphonylurea Study Group Research Team. Diabet Med. 1999;16(10):827–34.PubMedCrossRefGoogle Scholar
  79. Laugesen E, Østergaard JA, Leslie RD, Danish Diabetes Academy Workshop and Workshop Speakers. Latent autoimmune diabetes of the adult: current knowledge and uncertainty. Diabet Med. 2015;32(7):843–52.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Lee SH, Kwon HS, You SJ, Ahn YB, Yoon KH, Cha BY, Lee KW, Son HY. Identifying latent autoimmune diabetes in adults in Korea: the role of C-peptide and metabolic syndrome. Diabetes Res Clin Pract. 2009;83(2):e62–5.PubMedCrossRefGoogle Scholar
  81. Leslie RD, Delli Castelli M. Age-dependent influences on the origins of autoimmune diabetes: evidence and implications. Diabetes. 2004;53(12):3033–40.PubMedCrossRefGoogle Scholar
  82. Li X, Yang L, Zhou Z, et al. Glutamic acid decarboxylase 65 autoantibody levels discriminate two subtypes of latent autoimmune diabetes in adults. Chin Med J. 2003;116(11):1728–32.PubMedGoogle Scholar
  83. Li X, Zhou Z, Huang G, Peng J, Yan X, Yang L, Wang JP, Deng ZM. Study on the positive frequency and distribution of glutamic acid decarboxylase antibody in phenotypic type 2 diabetic patients. Chin J Epidemiol. 2005a;26(10):800–3.Google Scholar
  84. Li X, Zhou Z, Huang G, Su H, Yan X, Yang L. Metabolic syndrome in adult-onset latent autoimmune diabetes. Metab Syndr Relat Disord. 2005b;3(2):174–80.PubMedCrossRefGoogle Scholar
  85. Lindström J, Louheranta A, Mannelin M, Rastas M, Salminen V, Eriksson J, Uusitupa M, Tuomilehto J, Finnish Diabetes Prevention Study Group. The Finnish Diabetes Prevention Study (DPS): lifestyle intervention and 3-year results on diet and physical activity. Diabetes Care. 2003;26(12):3230–6.PubMedCrossRefGoogle Scholar
  86. Lohmann T, Kellner K, Verlohren HJ, Krug J, Steindorf J, Scherbaum WA, Seissler J. Titre and combination of ICA and autoantibodies to glutamic acid decarboxylase discriminate two clinically distinct types of latent autoimmune diabetes in adults (LADA). Diabetologia. 2001;44(8):1005–10.PubMedCrossRefGoogle Scholar
  87. Lohmann T, Nietzschmann U, Kiess W. ‘Lady-like’: is there a latent autoimmune diabetes in the young? Diabetes Care. 2008;23(11):1707–8.CrossRefGoogle Scholar
  88. Lu J, Hou X, Zhang L, Hu C, Zhou J, Pang C, Pan X, Bao Y, Jia W. Associations between clinical characteristics and chronic complications in latent autoimmune diabetes in adults and type 2 diabetes. Diabetes Metab Res Rev. 2015;31(4):411–20.PubMedCrossRefGoogle Scholar
  89. Ludvigsson J, Faresjo M, Hjorth M, Axelsson S, Chéramy M, Pihl M, Vaarala O, Forsander G, Ivarsson S, Johansson C, Lindh A, Nilsson NO, Aman J, Ortqvist E, Zerhouni P, Casas R. GAD treatment and insulin secretion in recent-onset type 1 diabetes. N Engl J Med. 2008;359(18):1909–20.PubMedCrossRefGoogle Scholar
  90. Ludvigsson J, Hjorth M, Cheramy M, Axelsson S, Pihl M, Forsander G, Nilsson NÖ, Samuelsson BO, Wood T, Aman J, Ortqvist E, Casas R. Extended evaluation of the safety and efficacy of GAD treatment of children and adolescents with recent-onset type 1 diabetes: a randomised controlled trial. Diabetologia. 2011;54(3):634–40.PubMedCrossRefGoogle Scholar
  91. Ludvigsson J, Krisky D, Casas R, et al. GAD65 antigen therapy in recently diagnosed T1DM mellitus. N Engl J Med. 2012;366(5):433–42.PubMedCrossRefGoogle Scholar
  92. Lukacs K, Hosszufalusi N, Dinya E, Bakacs M, Madacsy L, Panczel P. The type 2 diabetes-associated variant in TCF7L2 is associated with latent autoimmune diabetes in adult Europeans and the gene effect is modified by obesity: a meta-analysis and an individual study. Diabetologia. 2012;55:689–93.PubMedCrossRefGoogle Scholar
  93. Lundgren VM, Andersen MK, Isomaa B, Tuomi T. Family history of type 1 diabetes affects insulin secretion in patients with ‘type 2’ diabetes. Diabet Med. 2013;30:e163–9.PubMedCrossRefGoogle Scholar
  94. MacCuish AC, Irvine WJ, Barnes EW, Duncan LJP. Antibodies to pancreatic islet cells in insulin-dependent diabetics with coexistent autoimmune disease. Lancet. 1974;2(7896):1529–31.PubMedCrossRefGoogle Scholar
  95. Maddaloni E, Lessan N, Al Tikriti A, Buzzetti R, Pozzilli P, Barakat MT. Latent autoimmune diabetes in adults in the United Arab Emirates: clinical features and factors related to insulin-requirement. PLoS One. 2015;10(8):e0131837.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Maioli M, Pes GM, Delitala G, Puddu L, Falorni A, Tolu F, Lampis R, Orrù V, Secchi G, Cicalò AM, Floris R, Madau GF, Pilosu RM, Whalen M, Cucca F. Number of autoantibodies and HLA genotype, more than high titers of glutamic acid decarboxylase autoantibodies, predict insulin dependence in latent autoimmune diabetes of adults. Eur J Endocrinol. 2010;163(4):541–19.PubMedCrossRefGoogle Scholar
  97. Malaisse WJ, Lebrun P. Mechanisms of sulfonylurea-induced insulin release. Diabetes Care. 1990;13(Suppl 3):9–17.PubMedCrossRefGoogle Scholar
  98. Maruyama T, Tanaka S, Shimada A, Funae O, Kasuga A, Kanatsuka A, Takei I, Yamada S, Harii N, Shimura H, Kobayashi T. Insulin intervention in slowly progressive insulin-dependent (type 1) diabetes mellitus. J Clin Endocrinol Metab. 2008;93(6):2115–21.PubMedCrossRefGoogle Scholar
  99. Mohatt J, Gilliam LK, Bekris L, Ebbesson S, Lernmark A. Type 1 diabetes-related autoantibodies are rare in Alaska native populations. Int J Circumpolar Health. 2002;61(1):21–31.PubMedCrossRefGoogle Scholar
  100. Monge L, Bruno G, Pinach S, Grassi G, Maghenzani G, Dani F. A clinically orientated approach increases the efficiency of screening for latent autoimmune diabetes in adults (LADA) in a large clinic-based cohort of patients with diabetes onset over 50 years. Diabet Med. 2004;21(5):456–9.PubMedCrossRefGoogle Scholar
  101. Myhill P, Davis WA, Bruce DG, Mackay IR, Zimmet P, Davis TME. Chronic complications and mortality in community-based patients with latent autoimmune diabetes in adults: the Fremantle Diabetes Study. Diabet Med. 2008;25:1245–50.PubMedCrossRefGoogle Scholar
  102. Naik RG, Brooks-Worrell BM, Palmer JP. Latent autoimmune diabetes in adults. J Clin Endocrinol Metab. 2009;94(12):4635–44.PubMedCrossRefGoogle Scholar
  103. Nisticò L, Buzzetti R, Pritchard LE, Van der Auwera B, Giovannini C, Bosi E, Larrad MT, Rios MS, Chow CC, Cockram CS, Jacobs K, Mijovic C, Bain SC, Barnett AH, Vandewalle CL, Schuit F, Gorus FK, Tosi R, Pozzilli P, Todd JA. The CTLA-4 gene region of chromosome 2q33 is linked to, and associated with, type 1 diabetes. Belgian Diabetes Registry. Hum Mol Genet. 1996;5(7):1075–80.PubMedCrossRefGoogle Scholar
  104. Olsson L, Ahlbom A, Grill V, Midthjell K, Carlsson S. Sleep disturbances and low psychological well-being are associated with an increased risk of autoimmune diabetes in adults. Results from the Nord-Trøndelag Health Study. Diabetes Res Clin Pract. 2012;98(2):302–11.PubMedCrossRefGoogle Scholar
  105. Park Y, Hong S, Park L, Woo J, Baik S, Nam M, Lee K, Kim Y, KNDP Collaboratory Group. LADA prevalence estimation and insulin dependency during follow-up. Diabetes Metab Res Rev. 2011;27(8):975–9.PubMedCrossRefGoogle Scholar
  106. Petrone A, Suraci C, Capizzi M, Giaccari A, Bosi E, Tiberti C, Cossu E, Pozzilli P, Falorni A, Buzzetti R. The protein tyrosine phosphatase nonreceptor 22 (PTPN22) is associated with high GAD antibody titer in latent autoimmune diabetes in adults: Non Insulin Requiring Autoimmune Diabetes (NIRAD) Study 3. Diabetes Care. 2008;31(3):534–8.PubMedCrossRefGoogle Scholar
  107. Pettersen E, Skorpen F, Kvaloy K, Midthjell K, Grill V. Genetic heterogeneity in latent autoimmune diabetes is linked to various degrees of autoimmune activity: results from the Nord-Trondelag Health Study. Diabetes. 2010;59(1):302–10.PubMedCrossRefGoogle Scholar
  108. Pham MN, Hawa MI, Pfleger C, Roden M, Schernthaner G, Pozzilli P, Buzzetti R, Scherbaum WA, Seissler J, Kolb H, Hunter S, Leslie RD, Schloot NC, Action LADA Study Group. Pro- and anti-inflammatory cytokines in latent autoimmune diabetes in adults, type 1 and type 2 diabetes patients: Action LADA 4. Diabetologia. 2011;54(7):1630–8.PubMedCrossRefGoogle Scholar
  109. Pham MN, Hawa MI, Roden M, Schernthaner G, Pozzilli P, Buzzetti R, Scherbaum WA, Seissler J, Hunter S, Leslie RD, Kolb H, Schloot NC, Action LADA Study Group. Increased serum concentrations of adhesion molecules but not of chemokines in patients with type 2 diabetes compared with patients with type 1 diabetes and latent autoimmune diabetes in adult age: Action LADA 5. Diabet Med. 2012;29(4):470–8.PubMedCrossRefGoogle Scholar
  110. Pozzilli P, Di Mario U. Autoimmune diabetes not requiring insulin at diagnosis (latent autoimmune diabetes of the adult): definition, characterization, and potential prevention. Diabetes Care. 2001;24(8):1460–7.PubMedCrossRefGoogle Scholar
  111. Pozzilli P, Guglielmi C. Immunomodulation for the prevention of SPIDDM and LADA. Ann N Y Acad Sci. 2006;1079:90–8.PubMedCrossRefGoogle Scholar
  112. Qi X, Sun J, Wang J, Wang PP, Xu Z, Murphy M, Wang J, Xie Y, Xu W. Prevalence and correlates of latent autoimmune diabetes in adults in Tianjin China: a population based cross-sectional study. Diabetes Care. 2011;34(1):66–70.PubMedCrossRefGoogle Scholar
  113. Radtke MA, Midthjell K, Nilsen TI, Grill V. Heterogeneity of patients with latent autoimmune diabetes in adults: linkage to autoimmunity is apparent only in those with perceived need for insulin treatment: results from the Nord-Trondelag Health (HUNT) study. Diabetes Care. 2009;32(2):245–50.PubMedPubMedCentralCrossRefGoogle Scholar
  114. Ramos-Lopez E, Lange B, Kahles H, Willenberg HS, Meyer G, Penna-Martinez M, Reisch N, Hahner S, Seissler J, Badenhoop K. Insulin gene polymorphisms in type 1 diabetes, Addison’s disease and the polyglandular autoimmune syndrome type II. BMC Med Genet. 2008;9:65.PubMedPubMedCentralCrossRefGoogle Scholar
  115. Raz I, Elias D, Avron A, Tamir M, Metzger M, Cohen IR. Beta cell function in new-onset T1DM and immune-modulation with a heatshock protein peptide (Dia-Pep277): a randomised, doubleblind, phase II trial. Lancet. 2001;358(9295):1749–53.PubMedCrossRefPubMedCentralGoogle Scholar
  116. Raz I, Avron A, Tamir M, Metzger M, Symer L, Eldor R, Cohen IR, Elias D. Treatment of new-onset T1DM with peptide DiaPep277 is safe and associated with preserved beta-cell function: extension of a randomized, double-blind, phase II trial. Diabetes Metab Res Rev. 2007;23(4):292–8.PubMedCrossRefGoogle Scholar
  117. Roh MO, Jung CH, Kim BY, Mok JO, Kim CH. The prevalence and characteristics of latent autoimmune diabetes in adults (LADA) and its relation with chronic complications in a clinical department of a university hospital in Korea. Acta Diabetol. 2013;50(2):129–34.PubMedCrossRefGoogle Scholar
  118. Sachan A, Zaidi G, Sahu RP, Agrawal S, Colman PG, Bhatia E. Low prevalence of latent autoimmune diabetes in adults in northern India. Diabet Med. 2015;32(6):810–3.PubMedCrossRefGoogle Scholar
  119. Schloot N, Eisenbarth GS. Isohormonal therapy of endocrine autoimmunity. Immunol Today. 1995;16(6):289–94.PubMedCrossRefGoogle Scholar
  120. Schlosser M, Banga JP, Madec AM, Binder KA, Strebelow M, Rjasanowski I, Wassmuth R, Gilliam LK, Luo D, Hampe CS. Dynamic changes of GAD65 autoantibody epitope specificities in individuals at risk of developing type 1 diabetes. Diabetologia. 2005;48(5):922–30.PubMedCrossRefGoogle Scholar
  121. Schlosser M, Mueller PW, Torn C, Bonifacio E, Bingley PJ. Diabetes Antibody Standardization Program: evaluation of assays for insulin autoantibodies. Diabetologia. 2010;53(12):2611–20.PubMedCrossRefGoogle Scholar
  122. Seissler J, de Sonnaville JJ, Morgenthaler NG, Steinbrenner H, Glawe D, Khoo-Morgenthaler UY, Lan MS, Notkins AL, Heine RJ, Scherbaum WA. Immunological heterogeneity in type 1 diabetes: presence of distinct autoantibody patterns in patients with acute onset and slowly progressive disease. Diabetologia. 1998;41(8):891–7.PubMedCrossRefGoogle Scholar
  123. Shimada A, Imazu Y, Moringa S, Funae O, Kasuga A, Matsuoka K. T-cell insulitis found in anti-GAD65+ diabetes with residual β-cell function: a case report (Letter). Diabetes Care. 1999;22(4):615–7.PubMedCrossRefGoogle Scholar
  124. Signore A, Chianelli M, Ronga G, Pozzilli P, Beverley PC. In vivo labelling of activated T lymphocytes by i.v. injection of 123I-IL2 for detection of insulitis in type 1 diabetes. Prog Clin Biol Res. 1990;355:229–38.PubMedGoogle Scholar
  125. Signore A, Capriotti G, Chianelli M, Bonanno E, Galli F, Catalano C, Quintero AM, De Toma G, Manfrini S, Pozzilli P, Action LADA Group. Detection of insulitis by pancreatic scintigraphy with 99mTc-labeled IL-2 and MRI in patients with LADA (Action LADA 10). Diabetes Care. 2015;38(4):652–8.PubMedGoogle Scholar
  126. Song WJ, Schreiber WE, Zhong E, Liu FF, Kornfeld BD, Wondisford FE, Hussain MA. Exendin-4 stimulation of cyclin A2 in beta-cell proliferation. Diabetes. 2008;57(9):2371–81.PubMedPubMedCentralCrossRefGoogle Scholar
  127. Sørgjerd EP, Skorpen F, Kvaløy K, Midthjell K, Grill V. Time dynamics of autoantibodies are coupled to phenotypes and add to the heterogeneity of autoimmune diabetes in adults: the HUNT study, Norway. Diabetologia. 2012;55:1310–8.PubMedCrossRefGoogle Scholar
  128. Soriguer-Escofet F, Esteva I, Rojo-Martinez G, Ruiz de Adana S, Catalá M, Merelo MJ, Aguilar M, Tinahones F, García-Almeida JM, Gómez-Zumaquero JM, Cuesta-Muñoz AL, Ortego J, Freire JM. Prevalence of latent autoimmune diabetes of adults (LADA) in Southern Spain. Diabetes Res Clin Pract. 2002;56(3):213–20.PubMedCrossRefGoogle Scholar
  129. Spoletini M, Petrone A, Zampetti S, Capizzi M, Zavarella S, Osborn J, Foffi C, Tuccinardi D. Low-risk HLA genotype in T1DM is associated with less destruction of pancreatic B-cells 12 months after diagnosis. Diabet Med. 2007;24(12):1487–90.PubMedCrossRefGoogle Scholar
  130. Sutanegara D, Budhiarta AA. The epidemiology and management of diabetes mellitus in Indonesia. Diabetes Res Clin Pract. 2000;50(Suppl 2):S9–S16.PubMedCrossRefGoogle Scholar
  131. Szepietowska B, Głębocka A, Puch U, Górska M, Szelachowska M. Latent autoimmune diabetes in adults in a population-based cohort of Polish patients with newly diagnosed diabetes mellitus. Arch Med Sci. 2012;8(3):491–5.PubMedPubMedCentralCrossRefGoogle Scholar
  132. Takeda H, Kawasaki E, Shimizu I, Konoue E, Fujiyama M, Murao S, et al. Clinical, autoimmune, and genetic characteristics of adultonset diabetic patients with GAD autoantibodies in Japan (Ehime Study). Diabetes Care. 2002;25(6):995–1001.PubMedCrossRefGoogle Scholar
  133. Thai AC, Ng WY, Loke KY, Lee WR, Lui KF, Cheah JS. Anti-GAD antibodies in Chinese patients with youth and adultonset IDDM and NID. Diabetologia. 1997;40(12):1425–30.PubMedCrossRefGoogle Scholar
  134. Thunander M, Thorgeirsson H, Torn C, Petersson C, Landin-Olsson M. β-cell function and metabolic control in latent autoimmune diabetes in adults with early insulin versus conventional treatment: a 3-year follow-up. Eur J Endocrinol. 2011;164(2):239–44.PubMedPubMedCentralCrossRefGoogle Scholar
  135. Tiberti C, Giordano C, Locatelli M, Bosi E, Bottazzo GF, Buzzetti R, Cucinotta D, Galluzzo A, Falorni A, Dotta F. Identification of tyrosine phosphatase 2(256–760) construct as a new, sensitive marker for the detection of islet autoimmunity in type 2 diabetic patients: the non-insulin requiring autoimmune diabetes (NIRAD) study 2. Diabetes. 2008;57(5):1276–83.PubMedCrossRefGoogle Scholar
  136. Tree TI, Roep BO, Peakman M. A mini meta-analysis of studies on CD4+CD25+ T cells in human type 1 diabetes: report of the Immunology of Diabetes Society T Cell Workshop. Ann N Y Acad Sci. 2006;1079:9–18.PubMedCrossRefGoogle Scholar
  137. Tuomi T, Groop LC, Zimmet PZ, Rowley MJ, Knowles W, Mackay IR. Antibodies to glutamic acid decarboxylase reveal latent autoimmune diabetes mellitus in adults with a non-insulin-dependent onset of disease. Diabetes. 1993;42(2):359–62.PubMedCrossRefGoogle Scholar
  138. Tuomi T, Carlsson A, Li H, Isomaa B, Miettinen A, Nilsson A, Nissén M, Ehrnström BO, Forsén B, Snickars B, Lahti K, Forsblom C, Saloranta C, Taskinen MR, Groop LC. Clinical and genetic characteristics of type 2 diabetes with and without GAD antibodies. Diabetes. 1999;48(1):150–7.PubMedCrossRefGoogle Scholar
  139. Turner R, Stratton I, Horton V, Manley S, Zimmet P, Mackay IR, Shattock M, Bottazzo GF, Holman R. UKPDS 25: autoantibodies to islet-cell cytoplasm and glutamic acid decarboxylase for prediction of insulin requirement in type 2 diabetes. UK Prospective Diabetes Study Group. Lancet. 1997;350(9087):1288–93.PubMedCrossRefGoogle Scholar
  140. UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998;352:854–65.CrossRefGoogle Scholar
  141. Vang T, Congia M, Macis MD, Musumeci L, Orru V, Zavattari P, Nika K, Tautz L, Tasken K, Cucca F, Mustelin T, Bottini N. Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nat Genet. 2005;37:1317–9.PubMedCrossRefPubMedCentralGoogle Scholar
  142. Vatay A, Rajczy K, Pozsonyi E, Hosszúfalusi N, Prohászka Z, Füst G, Karádi I, Szalai C, Grósz A, Bártfai Z, et al. Differences in the genetic background of latent autoimmune diabetes in adults (LADA) and T1DM mellitus. Immunol Lett. 2002;84:109–15.PubMedCrossRefGoogle Scholar
  143. Wenzlau JM, Moua O, Sarkar SA, Yu L, Rewers M, Eisenbarth GS, Davidson HW, Hutton JC. SIC30A8 is a major target of humoral autoimmunity in T1DM and a predictive marker in prediabetes. Ann N Y Acad Sci. 2008;1150:256–9.PubMedCrossRefGoogle Scholar
  144. Wherrett DK, Bundy B, Becker DJ, DiMeglio LA, Gitelman SE, Goland R, Gottlieb PA, Greenbaum CJ, Herold KC, Marks JB, Monzavi R, Moran A, Orban T, Palmer JP, Raskin P, Rodriguez H, Schatz D, Wilson DM, Krischer JP, Skyler JS, T1DM TrialNet GAD Study Group. Antigen-based therapy with glutamic acid decarboxylase (GAD) vaccine in patients with recent-onset type 1 diabetes: a randomised doubleblind trial. Lancet. 2011;378(9788):319–27.PubMedPubMedCentralCrossRefGoogle Scholar
  145. Wilkin TJ. The accelerator hypothesis: weight gain as the missing link between type I and type II diabetes. Diabetologia. 2001;44(7):914–22.PubMedCrossRefGoogle Scholar
  146. Wilkin T, Greene S, McCrimmon R. Testing the accelerator hypothesis: a new approach to T1DM prevention (adAPT 1). Diabetes Obes Metab. 2016;18(1):3–5.PubMedCrossRefGoogle Scholar
  147. Xiang Y, Zhou P, Li X, Huang G, Liu Z, Xu A, Leslie RD, Zhou Z. Heterogeneity of altered cytokine levels across the clinical spectrum of diabetes in China. Diabetes Care. 2011;34(7):1639–41.PubMedPubMedCentralCrossRefGoogle Scholar
  148. Xu G, Stoffers DA, Habener JF, Bonner-Weir S. Exendin-4 stimulates both β-cell replication and neogenesis, resulting in increased β-cell mass and improved glucose tolerance in diabetic rats. Diabetes. 1999;48:2270–6.PubMedCrossRefGoogle Scholar
  149. Yang Z, Zhou Z, Huang G, Ling H, Yan X, Peng J, Li X. The CD4 regulatory T-cells is decreased in adults with latent autoimmune diabetes. Diabetes Res Clin Pract. 2007;76(1):126–31.PubMedCrossRefGoogle Scholar
  150. Zampetti S, Spoletini M, Petrone A, Capizzi M, Arpi ML, Tiberti C, Di Pietro S, Bosi E, Pozzilli P, Giorgino F, Buzzetti R, NIRAD Study Group. Association of TCF7L2 gene variants with low GAD autoantibody titre in LADA subjects (NIRAD study 5). Diabet Med. 2010;27(6):701–4.PubMedCrossRefGoogle Scholar
  151. Zampetti S, Capizzi M, Spoletini M, Campagna G, Leto G, Cipolloni L, Tiberti C, Bosi E, Falorni A, Buzzetti R, NIRAD Study Group. GADA titer-related risk for organ-specific autoimmunity in LADA subjects subdivided according to gender (NIRAD study 6). J Clin Endocrinol Metab. 2012;97(10):3759–65.PubMedCrossRefGoogle Scholar
  152. Zampetti S, Campagna G, Tiberti C, Songini M, Arpi ML, De Simone G, Cossu E, Cocco L, Osborn J, Bosi E, Giorgino F, Spoletini M, Buzzetti R, NIRAD Study Group. High GADA titer increases the risk of insulin requirement in LADA patients: a 7-year follow-up (NIRAD study 7). Eur J Endocrinol. 2014;171(6):697–704.PubMedCrossRefGoogle Scholar
  153. Zhang N, Huang W, Dong F, Liu Y, Zhang B, Jing L, Wang M, Yang G, Jing C. Insulin gene VNTR polymorphisms -2221MspI and -23HphI are associated with T1DM and latent autoimmune diabetes in adults: a meta-analysis. Acta Diabetol. 2015;52(6):1143–55.PubMedCrossRefGoogle Scholar
  154. Zhao Y, Yang L, Xiang Y, Liu L, Huang G, Long Z, Li X, Leslie RD, Wang X, Zhou Z. Dipeptidyl peptidase 4 inhibitor sitagliptin maintains beta-cell function in patients with recent-onset latent autoimmune diabetes in adults: one year prospective study. J Clin Endocrinol Metab. 2014;99(5):E876–80.PubMedCrossRefGoogle Scholar
  155. Zhou Z, Li X, Huang G, Peng J, Yang L, Yan X, Wang J. Rosiglitazone combined with insulin preserves islet beta cell function in adult-onset latent autoimmune diabetes (LADA). Diabetes Metab Res Rev. 2005;21(2):203–8.PubMedCrossRefGoogle Scholar
  156. Zhou J, Ma XJ, Bao YQ, Pan XP, Lu W, Hu C, Xiang KS, Jia WP. Study on prevalence of latent autoimmune diabetes in adults and its relationship with metabolic syndrome. Zhonghua Yi Xue Za Zhi. 2009;89(18):1250–4.PubMedGoogle Scholar
  157. Zhou Z, Xiang Y, Ji L, Jia W, Ning G, Huang G, Yang L, Lin J, Liu Z, Hagopian WA, Leslie RD, on behalf of LADA China Study Group. Frequency, immunogenetics, and clinical characteristics of latent autoimmune diabetes in China (LADA China study): a nationwide, multicenter, clinic-based cross-sectional study. Diabetes. 2013;62(2):543–50.PubMedPubMedCentralCrossRefGoogle Scholar
  158. Zinman B, Kahn SE, Haffner SM, O’Neill MC, Heise MA, Freed MI, ADOPT Study Group. Phenotypic characteristics of GAD antibody-positive recently diagnosed patients with type 2 diabetes in North America and Europe. Diabetes. 2004;53(12):3193–200.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Experimental Medicine“Sapienza” University of RomeRomeItaly

Personalised recommendations