Glycemic Targets and Prevention of Chronic Complications

  • Simona Cernea
  • Avivit Cahn
  • Itamar RazEmail author
Reference work entry
Part of the Endocrinology book series (ENDOCR)


Hyperglycemia is the main cause and critical initiating factor of chronic microvascular complications of diabetes and also a major contributor to the macrovascular complications. In diabetes care it is therefore essential to set appropriate glycemic targets (or target ranges) that guide the management of the disease in order to reduce the risk of long-term complications, while avoiding unnecessary burden or adverse events. In this chapter we discuss the role of hyperglycemia in inducing diabetes chronic complications and evidence from clinical trials proving the benefit of glycemic control in preventing or ameliorating the progression of micro- and macrovascular complications. We also review the recommendations of current clinical guidelines, including individualization of glycemic targets when treating patients with diabetes.


Glycemic targets Microvascular complications Macrovascular complications Glycemic control Clinical trials Guidelines 


  1. ACCORD Study Group Writing Committee. Nine-year effects of 3.7 years of intensive glycemic control on cardiovascular outcomes. Diabetes Care. 2016;39(5):701–8.CrossRefGoogle Scholar
  2. Action to Control Cardiovascular Risk in Diabetes Follow-On (ACCORDION) Eye Study Group and the Action to Control Cardiovascular Risk in Diabetes Follow-On (ACCORDION) Study Group. Persistent effects of intensive glycemic control on retinopathy in type 2 diabetes in the action to control cardiovascular risk in diabetes (ACCORD) follow-on study. Diabetes Care. 2016;39(7):1089–100.CrossRefGoogle Scholar
  3. Action to Control Cardiovascular Risk in Diabetes Study Group, Gerstein HC, Miller ME, Byington RP, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358(24):2545–59.CrossRefGoogle Scholar
  4. ADVANCE Collaborative Group, Patel A, MacMahon S, Chalmers J, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358(24):2560–72.CrossRefGoogle Scholar
  5. Agrawal L, Azad N, Emanuele NV, Veterans Affairs Diabetes Trial (VADT) Study Group, et al. Observation on renal outcomes in the Veterans Affairs Diabetes Trial. Diabetes Care. 2011;34(9):2090–4.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Albers JW, Herman WH, Pop-Busui R, Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group, et al. Effect of prior intensive insulin treatment during the Diabetes Control and Complications Trial (DCCT) on peripheral neuropathy in type 1 diabetes during the Epidemiology of Diabetes Interventions and Complications (EDIC) study. Diabetes Care. 2010;33(5):1090–6.PubMedPubMedCentralCrossRefGoogle Scholar
  7. American Diabetes Association. Glycemic targets. Diabetes Care. 2016;39(Suppl 1):S39–46.Google Scholar
  8. Amin R, Widmer B, Prevost AT, et al. Risk of microalbuminuria and progression to macroalbuminuria in a cohort with childhood onset type 1 diabetes: prospective observational study. BMJ. 2008;336(7646):697–701.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Berezin A. Metabolic memory phenomenon in diabetes mellitus: achieving and perspectives. Diabetes Metab Syndr. 2016. Scholar
  10. Bergenstal RM. Glycemic variability and diabetes complications: does it matter? Simply put, there are better glycemic markers! Diabetes Care. 2015;38(8):1615–21.PubMedCrossRefGoogle Scholar
  11. Bianchi C, Del Prato S. Metabolic memory and individual treatment aims in type 2 diabetes – outcome-lessons learned from large clinical trials. Rev Diabet Stud. 2011;8(3):432–40.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bonds DE, Miller ME, Bergenstal RM, et al. The association between symptomatic, severe hypoglycaemia and mortality in type 2 diabetes: retrospective epidemiological analysis of the ACCORD study. BMJ. 2010;340:b4909.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bron M, Wilson C, Fleck P. A post hoc analysis of HbA1c, hypoglycemia, and weight change outcomes with alogliptin vs. glipizide in older patients with type 2 diabetes. Diabetes Ther. 2014;5(2):521–34.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54(6):1615–25.CrossRefGoogle Scholar
  15. Brownlee M, Hirsch IB. Glycemic variability: a hemoglobin A1c-independent risk factor for diabetic complications. JAMA. 2006;295(14):1707–8.PubMedCrossRefGoogle Scholar
  16. Cahn A, Raz I, Kleinman Y, et al. Clinical assessment of individualized glycemic goals in patients with type 2 diabetes: formulation of an algorithm based on a survey among leading worldwide diabetologists. Diabetes Care. 2015;38(12):2293–300.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Cavender MA, Scirica BM, Raz I, et al. Cardiovascular outcomes of patients in SAVOR-TIMI 53 by baseline hemoglobin A1c. Am J Med. 2016;129(3):340.e1–8.CrossRefGoogle Scholar
  18. Ceriello A. The emerging challenge in diabetes: the “metabolic memory”. Vasc Pharmacol. 2012;57(5–6):133–8.CrossRefGoogle Scholar
  19. Ceriello A, Esposito K, Piconi L, et al. Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients. Diabetes. 2008;57(5):1349–54.PubMedCrossRefGoogle Scholar
  20. Chiasson JL, Josse RG, Gomis R, STOP-NIDDM Trial Research Group, et al. Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA. 2003;290(4):486–94.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Connelly KA, Yan AT, Leiter LA, et al. Cardiovascular implications of hypoglycemia in diabetes mellitus. Circulation. 2015;132(24):2345–50.PubMedCrossRefGoogle Scholar
  22. Control Group, Turnbull FM, Abraira C, Anderson RJ, et al. Intensive glucose control and macrovascular outcomes in type 2 diabetes. Diabetologia. 2009;52(11):2288–98.CrossRefGoogle Scholar
  23. Conway BN, May ME, Fischl A, Frisbee J, et al. Cause-specific mortality by race in low-income Black and White people with type 2 diabetes. Diabet Med. 2015;32(1):33–41.PubMedCrossRefGoogle Scholar
  24. Creager MA, Lüscher TF, Cosentino F, et al. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Circulation. 2003;108(12):1527–32.PubMedCrossRefGoogle Scholar
  25. Currie CJ, Peters JR, Tynan A, et al. Survival as a function of HbA1c in people with type 2 diabetes: a retrospective cohort study. Lancet. 2010;375(9713):481–9.PubMedCrossRefGoogle Scholar
  26. DCCT/EDIC Research Group. Effect of intensive diabetes treatment on albuminuria in type 1 diabetes: long-term follow-up of the Diabetes Control and Complications Trial and Epidemiology of Diabetes Interventions and Complications study. Lancet Diabetes Endocrinol. 2014;2(10):793–800.CrossRefGoogle Scholar
  27. Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) Study Research Group. Intensive diabetes treatment and cardiovascular outcomes in type 1 diabetes: the DCCT/EDIC study 30-year follow-up. Diabetes Care. 2016;39(5):686–93.CrossRefGoogle Scholar
  28. Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) Study Research Group, Lachin JM, White NH, Hainsworth DP, et al. Effect of intensive diabetes therapy on the progression of diabetic retinopathy in patients with type 1 diabetes: 18 years of follow-up in the DCCT/EDIC. Diabetes. 2015;64(2):631–42.CrossRefGoogle Scholar
  29. Duckworth W, Abraira C, Moritz T, VADT Investigators, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360(2):129–39.CrossRefGoogle Scholar
  30. Eeg-Olofsson K, Cederholm J, Nilsson PM, et al. New aspects of HbA1c as a risk factor for cardiovascular diseases in type 2 diabetes: an observational study from the Swedish National Diabetes Register (NDR). J Intern Med. 2010;268(5):471–82.PubMedCrossRefGoogle Scholar
  31. El-Osta A, Brasacchio D, Yao D, et al. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med. 2008;205(10):2409–17.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Emerging Risk Factors Collaboration, Sarwar N, Gao P, Seshasai SR, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375(9733):2215–22.CrossRefGoogle Scholar
  33. FLAT-SUGAR Trial Investigators, Probstfield JL, Hirsch I, O’Brien K, et al. Design of FLAT-SUGAR: randomized trial of prandial insulin versus prandial GLP-1 receptor agonist together with basal insulin and metformin for high-risk type 2 diabetes. Diabetes Care. 2015;38(8):1558–66.CrossRefGoogle Scholar
  34. Gaede P, Pedersen O. Intensive integrated therapy of type 2 diabetes: implications for long-term prognosis. Diabetes. 2004;53(Suppl 3):S39–47.PubMedCrossRefGoogle Scholar
  35. Gaede P, Vedel P, Larsen N, et al. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med. 2003;348(5):383–93.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Gaede P, Lund-Andersen H, Parving HH, et al. Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med. 2008;358(6):580–91.CrossRefGoogle Scholar
  37. Garber AJ, Abrahamson MJ, Barzilay JI, et al. Consensus statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the comprehensive type 2 diabetes management algorithm – 2016 executive summary. Endocr Pract. 2016;22(1):84–113.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Geiss LS, Herman WH, Smith PJ. Mortality among persons with non-insulin dependent diabetes. In: Harris MI, Cowie CC, Stern MP, Boyko EJ, Reiber GE, Bennett PH, editors. Diabetes in America. 2nd ed. Bethesda: National Institutes of Health; 1995. p. 233–58.Google Scholar
  39. Gerstein HC, Miller ME, Ismail-Beigi F, ACCORD Study Group, et al. Effects of intensive glycaemic control on ischaemic heart disease: analysis of data from the randomised, controlled ACCORD trial. Lancet. 2014;384(9958):1936–41.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058–70.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Gorst C, Kwok CS, Aslam S, et al. Long-term glycemic variability and risk of adverse outcomes: a systematic review and meta-analysis. Diabetes Care. 2015;38(12):2354–69.PubMedCrossRefGoogle Scholar
  42. Groop PH, Cooper ME, Perkovic V, et al. Linagliptin lowers albuminuria on top of recommended standard treatment in patients with type 2 diabetes and renal dysfunction. Diabetes Care. 2013;36(11):3460–8.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Hayward RA, Reaven PD, Wiitala WL, VADT Investigators, et al. Follow-up of glycemic control and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2015;372(23):2197–206.PubMedCrossRefGoogle Scholar
  44. Hillege HL, Janssen WM, Bak AA, PREVEND Study Group, et al. Microalbuminuria is common, also in a nondiabetic, nonhypertensive population, and an independent indicator of cardiovascular risk factors and cardiovascular morbidity. J Intern Med. 2001;249(6):519–26.PubMedCrossRefGoogle Scholar
  45. Hirsch IB. Glycemic variability and diabetes complications: does it matter? Of course it does! Diabetes Care. 2015;38(8):1610–4.PubMedCrossRefGoogle Scholar
  46. Holman RR, Paul SK, Bethel MA, et al. 10-Year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359(15):1577–89.PubMedCrossRefGoogle Scholar
  47. International Diabetes Federation Clinical Guidelines Task Force. Global guideline for type 2 diabetes. 2012.
  48. Inzucchi S, Majumdar S. Glycemic targets: what is the evidence? Med Clin North Am. 2015;99(1):47–67.PubMedCrossRefGoogle Scholar
  49. Inzucchi SE, Bergenstal RM, Buse JB, American Diabetes Association (ADA), European Association for the Study of Diabetes (EASD), et al. Management of hyperglycemia in type 2 diabetes: a patient-centered approach: position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2012;35(6):1364–79.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Inzucchi SE, Zinman B, Wanner C, et al. SGLT-2 inhibitors and cardiovascular risk: proposed pathways and review of ongoing outcome trials. Diab Vasc Dis Res. 2015;12(2):90–100.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Ismail-Beigi F, Craven T, Banerji MA, ACCORD Trial Group, et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. Lancet. 2010;376(9739):419–30.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Ismail-Beigi F, Moghissi E, Tiktin M, et al. Individualizing glycemic targets in type 2 diabetes mellitus: implications of recent clinical trials. Ann Intern Med. 2011;154(8):554–9.PubMedCrossRefGoogle Scholar
  53. Klein R, Klein BE, Moss SE. Relation of glycemic control to diabetic microvascular complications in diabetes mellitus. Ann Intern Med. 1996;124(1 Pt 2):90–6.PubMedCrossRefGoogle Scholar
  54. Klein R, Knudtson MD, Lee KE, et al. The Wisconsin epidemiologic study of diabetic retinopathy: XXII the twenty-five-year progression of retinopathy in persons with type 1 diabetes. Ophthalmology. 2008;115(11):1859–68.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Lachin JM, Genuth S, Nathan DM, DCCT/EDIC Research Group, et al. Effect of glycemic exposure on the risk of microvascular complications in the diabetes control and complications trial – revisited. Diabetes. 2008;57(4):995–1001.PubMedCrossRefGoogle Scholar
  56. Lingvay I, Manghi FP, García-Hernández P, DUAL V Investigators, et al. Effect of insulin glargine up-titration vs. insulin degludec/liraglutide on glycated hemoglobin levels in patients with uncontrolled type 2 diabetes: The DUAL V randomized clinical trial. JAMA. 2016;315(9):898–907.CrossRefGoogle Scholar
  57. Marso SP, Daniels GH, Brown-Frandsen K, LEADER Steering Committee, LEADER Trial Investigators, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311–22.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Mellbin LG, Malmberg K, Rydén L, et al. The relationship between glycaemic variability and cardiovascular complications in patients with acute myocardial infarction and type 2 diabetes: a report from the DIGAMI 2 trial. Eur Heart J. 2013;34(5):374–9.PubMedCrossRefGoogle Scholar
  59. Miyazawa T, Nakagawa K, Shimasaki S, et al. Lipid glycation and protein glycation in diabetes and atherosclerosis. Amino Acids. 2012;42(4):1163–70.PubMedCrossRefGoogle Scholar
  60. Monnier L, Mas E, Ginet C, et al. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA. 2006;295(14):1681–7.PubMedCrossRefGoogle Scholar
  61. Mosenzon O, Cahn A, Hirshberg B, et al. Cardiovascular outcomes by albumin creatinine ratio categories in the SAVOR trial. Diabetes. 2015;64(Suppl 1). Accessed 3 July 2016.
  62. Mosenzon O, Pollack R, Raz I. Treatment of type 2 diabetes: from “guidelines” to “position statements” and back, recommendations of the Israeli National Diabetes Council. Diabetes Care. 2016;39(Suppl 2):S146–53.PubMedCrossRefGoogle Scholar
  63. Nathan DM, Cleary PA, Backlund JY, Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group, et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med. 2005;353(25):2643–53.CrossRefGoogle Scholar
  64. NAVIGATOR Study Group, Holman RR, Haffner SM, JJ MM, et al. Effect of nateglinide on the incidence of diabetes and cardiovascular events. N Engl J Med. 2010;362(16):1463–76.CrossRefGoogle Scholar
  65. Nolan CJ, Ruderman NB, Kahn SE, et al. Insulin resistance as a physiological defense against metabolic stress: implications for the management of subsets of type 2 diabetes. Diabetes. 2015;64(3):673–86.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Ohkubo Y, Kishikawa H, Araki E, et al. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res Clin Pract. 1995;28(2):103–17.PubMedCrossRefGoogle Scholar
  67. ORIGIN Trial Investigators. Cardiovascular and other outcomes post-intervention with insulin glargine and omega-3 fatty acids (ORIGINALE). Diabetes Care. 2016;39(5):709–16.CrossRefGoogle Scholar
  68. ORIGIN Trial Investigators, Gerstein HC, Bosch J, Dagenais GR, et al. Basal insulin and cardiovascular and other outcomes in dysglycemia. N Engl J Med. 2012;367(4):319–28.CrossRefGoogle Scholar
  69. ORIGIN Trial Investigators, Gilbert RE, Mann JF, Hanefeld M, et al. Basal insulin glargine and microvascular outcomes in dysglycaemic individuals: results of the Outcome Reduction with an Initial Glargine Intervention (ORIGIN) trial. Diabetologia. 2014;57(7):1325–31.CrossRefGoogle Scholar
  70. Paneni F, Mocharla P, Akhmedov A, et al. Gene silencing of the mitochondrial adaptor p66(Shc) suppresses vascular hyperglycemic memory in diabetes. Circ Res. 2012;111(3):278–89.CrossRefGoogle Scholar
  71. Paneni F, Beckman JA, Creager MA, et al. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Eur Heart J. 2013;34(31):2436–43.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Pasko N, Toti F, Strakosha A, et al. Prevalence of microalbuminuria and risk factor analysis in type 2 diabetes patients in Albania: the need for accurate and early diagnosis of diabetic nephropathy. Hippokratia. 2013;17(4):337–41.PubMedPubMedCentralGoogle Scholar
  73. Phillips LS, Ratner RE, Buse JB, et al. We can change the natural history of type 2 diabetes. Diabetes Care. 2014;37(10):2668–76.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Pistrosch F, Ganz X, Bornstein SR, et al. Risk of and risk factors for hypoglycemia and associated arrhythmias in patients with type 2 diabetes and cardiovascular disease: a cohort study under real-world conditions. Acta Diabetol. 2015;52(5):889–95.PubMedCrossRefGoogle Scholar
  75. Pozzilli P, Leslie RD, Chan J, et al. The A1C and ABCD of glycaemia management in type 2 diabetes: a physician’s personalized approach. Diabetes Metab Res Rev. 2010;26(4):239–44.PubMedCrossRefGoogle Scholar
  76. Pozzilli P, Strollo R, Bonora E. One size does not fit all glycemic targets for type 2 diabetes. J Diabetes Investig. 2014;5(2):134–41.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Prattichizzo F, Giuliani A, Ceka A, et al. Epigenetic mechanisms of endothelial dysfunction in type 2 diabetes. Clin Epigenetics. 2015;7(1):56.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Quagliaro L, Piconi L, Assaloni R, et al. Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells: the role of protein kinase C and NAD(P)H-oxidase activation. Diabetes. 2003;52(11):2795–804.PubMedCrossRefGoogle Scholar
  79. Rajala U, Laakso M, Qiao Q, et al. Prevalence of retinopathy in people with diabetes, impaired glucose tolerance, and normal glucose tolerance. Diabetes Care. 1998;21(10):1664–9.PubMedCrossRefGoogle Scholar
  80. Ray KK, Seshasai SR, Wijesuriya S, et al. Effect of intensive control of glucose on cardiovascular outcomes and death in patients with diabetes mellitus: a meta-analysis of randomised controlled trials. Lancet. 2009;373(9677):1765–72.CrossRefPubMedGoogle Scholar
  81. Raz I, Wilson PW, Strojek K, et al. Effects of prandial versus fasting glycemia on cardiovascular outcomes in type 2 diabetes: the HEART2D trial. Diabetes Care. 2009;32(3):381–6.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Raz I, Ceriello A, Wilson PW, et al. Post hoc subgroup analysis of the HEART2D trial demonstrates lower cardiovascular risk in older patients targeting postprandial versus fasting/premeal glycemia. Diabetes Care. 2011;34(7):1511–3.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Raz I, Riddle MC, Rosenstock J, et al. Personalized management of hyperglycemia in type 2 diabetes: reflections from a Diabetes Care editors’ expert forum. Diabetes Care. 2013;36:1779–88.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Reaven PD, Moritz TE, Schwenke DC, Veterans Affairs Diabetes Trial, et al. Intensive glucose-lowering therapy reduces cardiovascular disease events in Veterans Affairs Diabetes Trial participants with lower calcified coronary atherosclerosis. Diabetes. 2009;58(11):2642–8.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Reddy MA, Zhang E, Natarajan R. Epigenetic mechanisms in diabetic complications and metabolic memory. Diabetologia. 2015;58(3):443–55.PubMedCrossRefGoogle Scholar
  86. Riddle MC, Ambrosius WT, Brillon DJ, Action to Control Cardiovascular Risk in Diabetes Investigators, et al. Epidemiologic relationships between A1C and all-cause mortality during a median 3.4-year follow-up of glycemic treatment in the ACCORD trial. Diabetes Care. 2010;33(5):983–90.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Rosenstock J, Vico M, Wei L, et al. Effects of dapagliflozin, an SGLT2 inhibitor, on HbA(1c), body weight, and hypoglycemia risk in patients with type 2 diabetes inadequately controlled on pioglitazone monotherapy. Diabetes Care. 2012;35(7):1473–8.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Rosenstock J, Guerci B, Hanefeld M, GetGoal Duo-2 Trial Investigators, et al. Prandial options to advance basal insulin glargine therapy: testing lixisenatide plus basal insulin versus insulin glulisine either as basal-plus or basal-bolus in type 2 diabetes: the GetGoal Duo-2 trial. Diabetes Care. 2016;39(8):1318–28.PubMedCrossRefGoogle Scholar
  89. Sarwar N, Aspelund T, Eiriksdottir G, et al. Markers of dysglycaemia and risk of coronary heart disease in people without diabetes: Reykjavik prospective study and systematic review. PLoS Med. 2010;7(5):e1000278.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Selvin E, Coresh J, Golden SH, et al. Glycemic control and coronary heart disease risk in persons with and without diabetes: the atherosclerosis risk in communities study. Arch Intern Med. 2005;165(16):1910–6.PubMedCrossRefGoogle Scholar
  91. Skyler JS, Bergenstal R, Bonow RO, American Diabetes Association, American College of Cardiology Foundation, American Heart Association, et al. Intensive glycemic control and the prevention of cardiovascular events: implications of the ACCORD, ADVANCE, and VA diabetes trials: a position statement of the American Diabetes Association and a scientific statement of the American College of Cardiology Foundation and the American Heart Association. Diabetes Care. 2009;32(1):187–92.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Stark Casagrande S, Fradkin JE, Saydah SH, et al. The prevalence of meeting A1C, blood pressure, and LDL goals among people with diabetes, 1988–2010. Diabetes Care. 2013;36(8):2271–9.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Stratton IM, Adler AI, Neil HA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ. 2000;321(7258):405–12.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Stratton IM, Kohner EM, Aldington SJ, et al. UKPDS 50: risk factors for incidence and progression of retinopathy in type II diabetes over 6 years from diagnosis. Diabetologia. 2001;44(2):156–63.PubMedCrossRefGoogle Scholar
  95. Suh S, Kim JH. Glycemic variability: how do we measure it and why is it important? Diabetes Metab J. 2015;39(4):273–82.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Tesfaye S, Stevens LK, Stephenson JM, et al. Prevalence of diabetic peripheral neuropathy and its relation to glycaemic control and potential risk factors: the EURODIAB IDDM Complications Study. Diabetologia. 1996;39(11):1377–84.PubMedPubMedCentralCrossRefGoogle Scholar
  97. The DCCT Research Group. The Diabetes Control and Complications Trial (DCCT). Design and methodologic considerations for the feasibility phase. Diabetes. 1986;35(5):530–45.CrossRefGoogle Scholar
  98. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329(14):977–86.CrossRefGoogle Scholar
  99. Thomas MC. Glycemic exposure, glycemic control, and metabolic karma in diabetic complications. Adv Chronic Kidney Dis. 2014;21(3):311–7.PubMedCrossRefGoogle Scholar
  100. UK Prospective Diabetes Study (UKPDS) Group. UK Prospective Diabetes Study (UKPDS). VIII. Study design, progress and performance. Diabetologia. 1991;34(12):877–90.CrossRefGoogle Scholar
  101. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998a;352(9131):837–53.CrossRefGoogle Scholar
  102. UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998b;352(9131):854–65.CrossRefGoogle Scholar
  103. van Leiden HA, Dekker JM, Moll AC, et al. Blood pressure, lipids, and obesity are associated with retinopathy: the Hoorn study. Diabetes Care. 2002;25(8):1320–5.PubMedCrossRefGoogle Scholar
  104. Wong TY, Liew G, Tapp RJ, et al. Relation between fasting glucose and retinopathy for diagnosis of diabetes: three population-based cross-sectional studies. Lancet. 2008;371(9614):736–43.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Wong MG, Perkovic V, Chalmers J, ADVANCE-ON Collaborative Group, et al. Long-term benefits of intensive glucose control for preventing end-stage kidney disease: ADVANCE-ON. Diabetes Care. 2016;39(5):694–700.PubMedCrossRefGoogle Scholar
  106. Wright A, Burden AC, Paisey RB, U.K. Prospective Diabetes Study Group, et al. Sulfonylurea inadequacy: efficacy of addition of insulin over 6 years in patients with type 2 diabetes in the U.K. Prospective Diabetes Study (UKPDS 57). Diabetes Care. 2002;25(2):330–6.PubMedCrossRefGoogle Scholar
  107. Writing Group for the DCCT/EDIC Research Group, Orchard TJ, Nathan DM, Zinman B, et al. Association between 7 years of intensive treatment of type 1 diabetes and long-term mortality. JAMA. 2015;313(1):45–53.CrossRefGoogle Scholar
  108. Ziegler D, Rathmann W, Dickhaus T, KORA Study Group, et al. Prevalence of polyneuropathy in pre-diabetes and diabetes is associated with abdominal obesity and macroangiopathy: the MONICA/KORA Augsburg Surveys S2 and S3. Diabetes Care. 2008;31(3):464–9.PubMedCrossRefGoogle Scholar
  109. Zinman B, Schmidt WE, Moses A, et al. Achieving a clinically relevant composite outcome of an HbA1c of <7% without weight gain or hypoglycaemia in type 2 diabetes: a meta-analysis of the liraglutide clinical trial programme. Diabetes Obes Metab. 2012;14(1):77–82.PubMedCrossRefGoogle Scholar
  110. Zinman B, Wanner C, Lachin JM, EMPA-REG OUTCOME Investigators, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28.CrossRefPubMedPubMedCentralGoogle Scholar
  111. Zoungas S, Chalmers J, Neal B, ADVANCE-ON Collaborative Group, et al. Follow-up of blood-pressure lowering and glucose control in type 2 diabetes. N Engl J Med. 2014;371(15):1392–406.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department M3/Internal Medicine IVUniversity of Medicine and PharmacyTîrgu MureşRomania
  2. 2.Diabetes, Nutrition and Metabolic Diseases Outpatient UnitEmergency County Clinical HospitalTîrgu MureşRomania
  3. 3.Diabetes Unit, Department of Internal MedicineHadassah Hebrew University HospitalJerusalemIsrael
  4. 4.Endocrinology and Metabolism Unit, Department of Internal MedicineHadassah Hebrew University HospitalJerusalemIsrael

Personalised recommendations