Advertisement

Overview of Glucose Homeostasis

  • Ele Ferrannini
  • Marta Seghieri
Reference work entry
Part of the Endocrinology book series (ENDOCR)

Abstract

During fasting conditions, glucose metabolism is maintained through a fine balance between endogenous glucose production from the liver (80%) and kidney (20%) and glucose utilization by body tissues. After the ingestion of a meal, the rise in plasma glucose and insulin, together to gut factors, combine to suppress endogenous glucose production and stimulate glucose uptake in adipose tissue and muscle. The liver (hepatic glucose production) is more sensitive to the inhibitory action of insulin than are peripheral tissues (glucose uptake) to the stimulatory action of insulin. Glucose metabolism is dependent upon the coordinate activation of the insulin signal transduction system, glucose transport/phosphorylation and oxidation by the pyruvate dehydrogenase complex and the mitochondrial chain. Insulin action on glucose metabolism is both direct (stimulation of glucose transport, glycolysis, and glycogen synthesis) and indirect (inhibition of lipolysis, lipid oxidation, and protein degradation). In insulin-sensitive tissues, the three major substrates (glucose, FFAs, amino acids) are in competition with one another. Glucagon plays a role in the tonic support of hepatic glucose production and is also the leading counterregulatory mechanism activated in the defense against hypoglycemia. The amplification of insulin secretion during an oral test is attributed to the nutrient-stimulated release of incretin hormones and their physiological actions, including potentiation of glucose-induced insulin secretion, suppression of glucagon release, inhibition of gastric emptying, and enhancement of satiety. GLP-1 directly, and indirectly by increasing insulin and inhibiting glucagon, augments hepatic glucose uptake and inhibits hepatic glucose production. 

Keywords

Plasma glucose Insulin Endogenous glucose production Glucose disposal Insulin sensitivity and secretion Incretin effect Counterregulatory system 

References

  1. Abdul-Ghani MA, DeFronzo RA. Pathogenesis of insulin resistance in skeletal muscle. J Biomed Biotechnol. 2010;2010:476279.  https://doi.org/10.1155/2010/476279.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Abumrad NN, Cherrington AD, Williams PE, Lacy WW, Rabin D. Absorption and disposition of a glucose load in the conscious dog. Am J Phys. 1982;242(6):E398–406.Google Scholar
  3. Bolli G, De Feo P, Perriello G, De Cosmo S, Ventura M, Campbell P, Brunetti P, Gerich JE. Role of hepatic autoregulation in defense against hypoglycemia in humans. J Clin Invest. 1985;75(5):1623–31.  https://doi.org/10.1172/JCI111869.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bonadonna RC, Zych K, Boni C, Ferrannini E, DeFronzo RA. Time dependence of the interaction between lipid and glucose in humans. Am J Phys. 1989;257(1 Pt 1):E49–56.Google Scholar
  5. Boyle PJ, Schwartz NS, Shah SD, Clutter WE, Cryer PE. Plasma glucose concentrations at the onset of hypoglycemic symptoms in patients with poorly controlled diabetes and in nondiabetics. N Engl J Med. 1988;318(23):1487–92.  https://doi.org/10.1056/NEJM198806093182302.CrossRefPubMedGoogle Scholar
  6. Brighton CA, Rievaj J, Kuhre RE, Glass LL, Schoonjans K, Holst JJ, Gribble FM, Reimann F. Bile acids trigger GLP-1 release predominantly by accessing basolaterally located G protein-coupled bile acid receptors. Endocrinology. 2015;156(11):3961–70.  https://doi.org/10.1210/en.2015-1321.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Burcelin R, Thorens B. Evidence that extrapancreatic GLUT2-dependent glucose sensors control glucagon secretion. Diabetes. 2001;50(6):1282–9.  https://doi.org/10.2337/diabetes.50.6.1282.CrossRefPubMedGoogle Scholar
  8. Carruthers A, DeZutter J, Ganguly A, Devaskar SU. Will the original glucose transporter isoform please stand up! Am J Physiol Endocrinol Metab. 2009;297(4):E836–48.  https://doi.org/10.1152/ajpendo.00496.2009.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Carter ME, Brunet A. FOXO transcription factors. Curr Biol. 2007;17(4):R113–4.CrossRefGoogle Scholar
  10. Cerasi E, Fick G, Rudemo M. A mathematical model for the glucose induced insulin release in man. Eur J Clin Investig. 1974;4(4):267–78.CrossRefGoogle Scholar
  11. Coggan AR. Use of stable isotopes to study carbohydrate and fat metabolism at the whole-body level. Proc Nutr Soc. 1999;58(4):953–61.  https://doi.org/10.1017/S0029665199001263.CrossRefPubMedGoogle Scholar
  12. Colowick SP. The hexokinases. In: Boyer PD, editor. The enzymes, vol. IX. 3rd ed. New York: Academic; 1973. p. 1–48.  https://doi.org/10.1016/S1874-6047(08)60113-4.CrossRefGoogle Scholar
  13. Copps KD, White MF. Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia. 2012;55(10):2565–82.  https://doi.org/10.1007/s00125-012-2644-8.CrossRefPubMedPubMedCentralGoogle Scholar
  14. De Feo P, Bolli G, Perriello G, De Cosmo S, Compagnucci P, Angeletti G, Santeusanio F, Gerich JE, Motolese M, Brunetti P. The adrenergic contribution to glucose counterregulation in type I diabetes mellitus. Dependency on A-cell function and mediation through beta 2-adrenergic receptors. Diabetes. 1983;32(10):887–93.  https://doi.org/10.2337/diab.32.10.887.CrossRefPubMedGoogle Scholar
  15. DeFronzo RA. Banting lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 2009;58(4):773–95.  https://doi.org/10.2337/db09-9028.CrossRefPubMedPubMedCentralGoogle Scholar
  16. DeFronzo RA, Tobin J, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Phys. 1979;237(3):E214–23.Google Scholar
  17. DeFronzo RA, Ferrannini E, Hendler R, Felig P, Wharen J. Regulation of splanchnic and peripheral glucose uptake by insulin and hyperglycemia in man. Diabetes. 1983;32(1):35–45.  https://doi.org/10.2337/diab.32.1.35.CrossRefPubMedGoogle Scholar
  18. Del Prato S, Bonadonna R, Bonora E, Gulli G, Solini A, Shank M, DeFronzo RA. Characterization of cellular defects in insulin action in type 2 (non-insulin-dependent) diabetes mellitus. J Clin Invest. 1993;91(2):484–94.  https://doi.org/10.1172/JCI116226.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Elrick H, Stimmler L, Hlad CJ Jr, Arai Y. Plasma insulin response to oral and intravenous glucose administration. J Clin Endocrinol Metab. 1964;24:1076–82.  https://doi.org/10.1210/jcem-24-10-1076.CrossRefPubMedGoogle Scholar
  20. Felber JP, Vannotti A. Effect of the level of free fatty acids (NEFA) in the plasma on glycemia and insulinemia. Helv Physiol Pharmacol Acta. 1964;22:C13–5.PubMedGoogle Scholar
  21. Ferrannini E. The theoretical bases of indirect calorimetry: a review. Metabolism. 1988;37(3):287–301.CrossRefGoogle Scholar
  22. Ferrannini E. The stunned beta cell: a brief history. Cell Metab. 2010;11(5):349–52.  https://doi.org/10.1016/j.cmet.2010.04.009.CrossRefPubMedGoogle Scholar
  23. Ferrannini E, Cobelli C. The kinetics of insulin in man, II: role of the liver. Diabetes Metab Rev. 1987;3(2):365–97.  https://doi.org/10.1002/dmr.5610030202.CrossRefPubMedGoogle Scholar
  24. Ferrannini E, DeFronzo RA. Insulin actions in vivo: glucose metabolism. In: DeFronzo RA, Ferrannini E, Zimmet P, Alberti G, editors. International textbook of diabetes mellitus. Chichester: Wiley-Blackwell; 2015. p. 211–33.  https://doi.org/10.1002/9781118387658.ch14.CrossRefGoogle Scholar
  25. Ferrannini E, Mari A. How to measure insulin sensitivity. J Hypertens. 1988;16(7):895–906.CrossRefGoogle Scholar
  26. Ferrannini E, Mari A. Beta cell function and its relation to insulin action in humans: a critical appraisal. Diabetologia. 2004;47(5):943–56.  https://doi.org/10.1007/s00125-004-1381-z.CrossRefPubMedGoogle Scholar
  27. Ferrannini E, Mari A. β-cell function in type 2 diabetes. Metabolism. 2014;63(10):1217–27.  https://doi.org/10.1016/j.metabol.2014.05.012.CrossRefPubMedGoogle Scholar
  28. Ferrannini E, Pilo A. Pattern of insulin delivery after intravenous glucose injection in man and its relation to plasma glucose disappearance. J Clin Invest. 1979;64(1):243–54.CrossRefGoogle Scholar
  29. Ferrannini E, Del Prato S, DeFronzo RA. Glucose kinetics: tracer methods. In: Clarke WL, Larner J, Pohl SL, editors. Methods in diabetes research, Clinical methods, vol. II. New York: Wiley; 1986a. p. 107–42.Google Scholar
  30. Ferrannini E, Barrett EJ, Bevilacqua S, Jacob R, Walesky M, Sherwin RS, DeFronzo RA. Effect of free fatty acids on blood amino acid levels in human. Am J Phys. 1986b;250(6 Pt 1):E686–94.Google Scholar
  31. Ferrannini E, Bevilacqua S, Lanzone L, Bonadonna R, Brandi L, Oleggini M, Boni C, Buzzigoli G, Ciociaro D, Luzi L, DeFronzo RA. Metabolic interactions of amino acids and glucose in healthy humans. Diabetes. Nutr Metab. 1988;1:175–86.Google Scholar
  32. Ferré P, Foretz M, Azzout-Marniche D, Bécard D, Foufelle F. Sterol-regulatory-element-binding protein 1c mediates insulin action on hepatic gene expression. Biochem Soc Trans. 2001;29(Pt 4):547–52.CrossRefGoogle Scholar
  33. Fong NM, Jensen TC, Shah AS, Parekh NN, Saltiel AR, Brady MJ. Identification of binding sites on protein targeting to glycogen for enzymes of glycogen metabolism. J Biol Chem. 2000;275(45):35034–9.  https://doi.org/10.1074/jbc.M005541200.CrossRefPubMedGoogle Scholar
  34. Friedman B, Goodman EH Jr, Weinhouse S. Effects of insulin and fatty acids on gluconeogenesis in the rat. J Biol Chem. 1967;242(16):3620–7.Google Scholar
  35. Gastaldelli A, Baldi S, Pettiti M, Toschi E, Camastra S, Natali A, Landau BR, Ferrannini E. Influence of obesity and type 2 diabetes on gluconeogenesis and glucose output in humans: a quantitative study. Diabetes. 2000;49(8):1367–73.CrossRefGoogle Scholar
  36. Gastaldelli A, Ferrannini E, Miyazaki Y, DeFronzo RA. Beta-cell dysfunction and glucose intolerance: results from the San Antonio metabolism (SAM) study. Diabetologia. 2004;47:31–9.  https://doi.org/10.1007/s00125-003-1263-9.CrossRefPubMedGoogle Scholar
  37. Govers R. Molecular mechanisms of GLUT4 regulation in adipocytes. Diabetes Metab. 2014;40(6):400–10.  https://doi.org/10.1016/j.diabet.2014.01.005.CrossRefPubMedGoogle Scholar
  38. Grodsky GM. A threshold distribution hypothesis for packet storage of insulin and its mathematical modeling. J Clin Invest. 1972;51(8):2047–59.CrossRefGoogle Scholar
  39. Haber RS, Weinstein SP, O’Boyle E, Morgello S. Tissue distribution of the human GLUT3 glucose transporter. Endocrinology. 1993;132(6):2538–43.  https://doi.org/10.1210/endo.132.6.8504756.CrossRefPubMedGoogle Scholar
  40. Holness MJ, Sugden MC. Regulation of pyruvate dehydrogenase complex activity by reversible phosphorylation. Biochem Soc Trans. 2003;31(Pt 6):1143–51.  https://doi.org/10.1042/BST0311143.CrossRefPubMedGoogle Scholar
  41. Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev. 2007;87(4):1409–39.CrossRefGoogle Scholar
  42. Holst JJ, Gribble F, Horowitz M, Rayner CK. Roles of the gut in glucose homeostasis. Diabetes Care. 2016;39(6):884–92.  https://doi.org/10.2337/dc16-0351.CrossRefPubMedGoogle Scholar
  43. Hue L, Taegtmeyer H. The Randle cycle revisited: a new head for an old hat. Am J Physiol Endocrinol Metab. 2009;297(3):E578–91.  https://doi.org/10.1152/ajpendo.00093.2009.CrossRefPubMedPubMedCentralGoogle Scholar
  44. James DE, Brown R, Navarro J, Pilch PF. Insulin-regulatable tissues express a unique insulin sensitive glucose transport protein. Nature. 1988;333(6169):183–5.  https://doi.org/10.1038/333183a0.CrossRefPubMedGoogle Scholar
  45. Kahn SE, Prigeon RL, McCulloch DK, Boyko EJ, Bergman RN, Schwartz MW, Neifing JL, Ward WK, Beard JC, Palmer JP. Quantification of the relationship between insulin sensitivity and beta-cell function in human subjects. Evidence for a hyperbolic function. Diabetes. 1993;42:1663–72.  https://doi.org/10.2337/diabetes.42.11.1663.CrossRefPubMedGoogle Scholar
  46. Landau BR. Estimating gluconeogenic rates in NIDDM. Adv Exp Med Biol. 1993;334:209–20.CrossRefGoogle Scholar
  47. Larance M, Ramm G, James DE. The GLUT4 code. Mol Endocrinol. 2008;22(2):226–33.  https://doi.org/10.1210/me.2007-0282.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Licko V. Threshold secretory mechanism: a model of derivative element in biological control. Bull Math Biol. 1973;35(1):51–8.CrossRefGoogle Scholar
  49. Mari A, Schmitz O, Gastaldelli A, Oestergaard T, Nyholm B, Ferrannini E. Meal and oral glucose tests for the assessment of β-cell function: modeling analysis in normal subjects. Am J Phys. 2002a;283(6):E1159–66.Google Scholar
  50. Mari A, Tura A, Gastaldelli A, Ferrannini E. Assessing insulin secretion by modeling in multiple-meal tests: role of potentiation. Diabetes. 2002b;51(Suppl 1):S221–6.CrossRefGoogle Scholar
  51. Mari A, Tura A, Natali A, Laville M, Laakso M, Gabriel R, Beck-Nielsen H, Ferrannini E, RISC Investigators. Impaired beta cell glucose sensitivity rather than inadequate compensation for insulin resistance is the dominant defect in glucose intolerance. Diabetologia. 2010;53(4):749–56.  https://doi.org/10.1007/s00125-009-1647-6.CrossRefPubMedGoogle Scholar
  52. Mayo KE, Miller LJ, Bataille D, Dalle S, Goke B, Thorens B, Drucker DJ. International union of pharmacology. XXXV. The glucagon receptor family. Pharmacol Rev. 2003;55(1):167–94.  https://doi.org/10.1124/pr.55.1.6.CrossRefPubMedGoogle Scholar
  53. Mosca E, Barcella M, Alfieri R, Bevilacqua A, Canti G, Milanesi L. Systems biology of the metabolic network regulated by the Akt pathway. Biotechnol Adv. 2012;30(1):131–41.  https://doi.org/10.1016/j.biotechadv.2011.08.004.CrossRefPubMedGoogle Scholar
  54. Mueckler M, Thorens B. The SLC2 (GLUT) family of membrane transporters. Mol Asp Med. 2013;34(2–3):121–38.  https://doi.org/10.1016/j.mam.2012.07.001.CrossRefGoogle Scholar
  55. Muscelli E, Casolaro A, Gastaldelli A, Mari A, Seghieri G, Astiarraga B, Chen Y, Alba M, Holst J, Ferrannini E. Mechanisms for the antihyperglycemic effect of sitagliptin in patients with type 2 diabetes. J Clin Endocrinol Metab. 2012;97(8):2818–26.  https://doi.org/10.1210/jc.2012-1205.CrossRefPubMedGoogle Scholar
  56. Natali A, Buzzigoli G, Taddei S, Santoro D, Cerri M, Pedrinelli R, Ferrannini E. Effects of insulin on hemodynamics and metabolism in human forearm. Diabetes. 1990;39(4):490–500.  https://doi.org/10.2337/diab.39.4.490.CrossRefPubMedGoogle Scholar
  57. Nauck MA, Heimesaat MM, Ørskov C, Holst JJ, Ebert R, Creutzfeldt W. Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest. 1993;91(1):301–7.  https://doi.org/10.1172/JCI116186.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Nesher R, Cerasi E. Biphasic insulin release as the expression of combined inhibitory and potentiating effects of glucose. Endocrinology. 1987;121(3):1017–24.CrossRefGoogle Scholar
  59. Nuutila P, Koivisto VA, Knuuti J, Ruotsalainen U, Teras M, Haaparanta M, Bergman J, Solin O, Voipiopulkki LM, Wegelius U, Yki-Jarvinen H. Glucose–free fatty acid cycle operates in human heart and skeletal muscle in vivo. J Clin Invest. 1992;89:1767–74.  https://doi.org/10.1172/JCI115780.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Printz RL, Koch S, Potter LR, O’Doherty RM, Tiesinga JJ, Moritz S, Granner DK. Hexokinase II mRNA and gene structure, regulation by insulin, and evolution. J Biol Chem. 1993;268(7):5209–19.PubMedGoogle Scholar
  61. Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963;1(7285):785–9.CrossRefGoogle Scholar
  62. Roden M, Price TB, Perseghin G, Petersen KF, Rothman DL, Cline GW, Shulman GI. Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Invest. 1996;97(12):2859–65.  https://doi.org/10.1172/JCI118742.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Rogers PA, Fisher RA, Harris H. An electrophoretic study of the distribution and properties of human hexokinases. Biochem Genet. 1975;13:857–66.  https://doi.org/10.1007/BF00484416.CrossRefPubMedGoogle Scholar
  64. Rothman DL, Magnusson I, Katz LD, Shulman RG, Shulman GI. Quantitation of hepatic glycogenolysis and gluconeogenesis in fasting humans with 13C NMR. Science. 1991;254(5031):573–6.CrossRefGoogle Scholar
  65. Saltiel AR, Kahn CR. Insulin signaling and the regulation of glucose and lipid metabolism. Nature. 2001;414(6865):799–806.  https://doi.org/10.1038/414799a.CrossRefPubMedGoogle Scholar
  66. Seghieri M, Rebelos E, Gastaldelli A, Astiarraga BD, Casolaro A, Barsotti E, Pocai A, Nauck M, Muscelli E, Ferrannini E. Direct effect of GLP-1 infusion on endogenous glucose production in humans. Diabetologia. 2013;56(1):156–61.  https://doi.org/10.1007/s00125-012-2738-3.CrossRefPubMedGoogle Scholar
  67. Siddle K. Signalling by insulin and IGF receptors: supporting acts and new players. J Mol Endocrinol. 2011;47(1):R1–10.  https://doi.org/10.1530/JME-11-0022.CrossRefPubMedGoogle Scholar
  68. Sindelar DK, Balcom JH, Chu CA, Neal DW, Cherrington AD. A comparison of the effects of selective increases in peripheral or portal insulin on hepatic glucose production in the conscious dog. Diabetes. 1996;45(11):1594–604.  https://doi.org/10.2337/diab.45.11.1594.CrossRefPubMedGoogle Scholar
  69. Thorens B, Mueckler M. Glucose transporters in the 21st century. Am J Physiol Endocrinol Metab. 2010;298(2):E141–5.  https://doi.org/10.1152/ajpendo.00712.2009.CrossRefPubMedGoogle Scholar
  70. Vardarli I, Arndt E, Deacon CF, Holst JJ, Nauck MA. Effects of sitagliptin and metformin treatment on incretin hormone and insulin secretory responses to oral and “isoglycemic” intravenous glucose. Diabetes. 2014;63(2):663–74.  https://doi.org/10.2337/db13-0805.CrossRefPubMedGoogle Scholar
  71. Wahren J, Hagenfeldt L, Felig P. Splanchnic and leg exchange of glucose, amino acids, and free fatty acids during exercise in diabetes mellitus. J Clin Invest. 1975;55:1303–14.CrossRefGoogle Scholar
  72. Wajngot A, Chandramouli V, Schumann WC, Kumaran K, Efendi S, Landau BR. Testing of the assumptions made in estimating the extent of futile cycling. Am J Phys. 1989;256(5 Pt 1):E668–75.Google Scholar
  73. Wang Y, Viscarra J, Kim SJ, Sul HS. Transcriptional regulation of hepatic lipogenesis. Nat Rev Mol Cell Biol. 2015;16(11):678–89.  https://doi.org/10.1038/nrm4074.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Ward WK, Bolgiano DC, McKnight B, Halter JB, Porte D Jr. Diminished B cell secretory capacity in patients with noninsulin-dependent diabetes mellitus. J Clin Invest. 1984;74(4):1318–28.  https://doi.org/10.1172/JCI111542.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Warram JH, Sigal RJ, Martin BC, Krolewski AS, Soeldner JS. Natural history of impaired glucose tolerance: follow-up at Joslin Clinic. Diabet Med. 1996;13(9 Suppl 6):S40–5.PubMedGoogle Scholar
  76. Whitehead JP, Clark SF, Urso B, James DE. Signalling through the insulin receptor. Curr Opin Cell Biol. 2000;12(2):222–8.  https://doi.org/10.1016/S0955-0674(99)00079-4.CrossRefPubMedGoogle Scholar
  77. Wilson C, Vereshchagina N, Reynolds B, Meredith D, Boyd CA, Goberdhan DC. Extracellular and subcellular regulation of the PI3K/Akt cassette: new mechanisms for controlling insulin and growth factor signalling. Biochem Soc Trans. 2007;35(Pt 2):219–21.  https://doi.org/10.1042/BST0350219.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Yki-Jarvinen H, Puhakeinen I, Koivisto VA. Effect of free fatty acids on glucose uptake and non-oxidative glycolysis across human forearm tissues in the basal state and during insulin stimulation. J Clin Endocrinol Metab. 1991;72:1266–77.  https://doi.org/10.1210/jcem-72-6-1268.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CNR Institute of Clinical PhysiologyPisaItaly
  2. 2.Department of Internal MedicineUniversity of PisaPisaItaly
  3. 3.Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly

Personalised recommendations