Graves’ Disease

  • Catherine Napier
  • Simon H. S. PearceEmail author
Reference work entry
Part of the Endocrinology book series (ENDOCR)


Graves’ disease (GD) is a common autoimmune thyroid disorder, affecting 20–30 per 100,000 of the population per year. In keeping with other autoimmune diseases, it exhibits a clear female preponderance (F:M 6–7:1) with approximately 3% of women and 0.5% of men developing GD during their lifetime.

GD is a complex genetic condition, with environmental factors precipitating the disease in genetically predisposed individuals who harbor multiple susceptibility alleles. Thyroid-stimulating hormone receptor (TSHR) antibodies are the immunological hallmark of the disease and the key driver for thyrocyte hyperplasia and the resulting hyperthyroidism. Our understanding of the pathogenesis of the condition has developed significantly in recent years, reflecting advances in human genomics, molecular immunology, and the availability of murine models of disease.

Clinical features in GD are widespread, with a myriad of typical symptoms and physical findings at presentation. Frequently reported symptoms include tremor, palpitations, heat intolerance, weight loss, and anxiety. Physical examination may reveal warm, tremulous extremities, atrial fibrillation, signs of thyroid orbitopathy, and a goiter with a bruit. A series of extrathyroidal manifestations can accompany GD at presentation or appear during the course of the disease; these are associated with elevated titers of circulating autoantibodies. The commonest extrathyroidal manifestation is thyroid orbitopathy, which can be sight-threatening and requires a detailed and careful approach to management. Recent developments in our understanding of the pathogenesis of these conditions may lead to the development of novel therapies in coming years.


Autoimmune Hyperthyroidism 


  1. Abdel-Wahab N, Shah M, Suarez-Almazor ME. Adverse events associated with immune checkpoint blockade in patients with cancer: a systematic review of case reports. PLoS One. 2016;11(7):e0160221.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Adams DD, Fastier FN, Howie JB, Kennedy TH, Kilpatrick JA, Stewart RD. Stimulation of the human thyroid by infusions of plasma containing LATS protector. J Clin Endocrinol Metab. 1974;39(5):826–32.CrossRefPubMedGoogle Scholar
  3. Arscott P, Rosen ED, Koenig RJ, Kaplan MM, Ellis T, Thompson N, et al. Immunoreactivity to Yersinia enterocolitica antigens in patients with autoimmune thyroid disease. J Clin Endocrinol Metab. 1992;75(1):295–300.PubMedGoogle Scholar
  4. Arscott PL, Koenig RJ, Kaplan MM, Glick GD, Baker Jr JR. Unique autoantibody epitopes in an immunodominant region of thyroid peroxidase. J Biol Chem. 1996;271(9):4966–73.CrossRefPubMedGoogle Scholar
  5. Atabani SF, Thio CL, Divanovic S, Trompette A, Belkaid Y, Thomas DL, et al. Association of CTLA4 polymorphism with regulatory T cell frequency. Eur J Immunol. 2005;35(7):2157–62.CrossRefPubMedGoogle Scholar
  6. Ban Y, Greenberg DA, Concepcion E, Skrabanek L, Villanueva R, Tomer Y. Amino acid substitutions in the thyroglobulin gene are associated with susceptibility to human and murine autoimmune thyroid disease. Proc Natl Acad Sci USA. 2003;100(25):15119–24.CrossRefPubMedGoogle Scholar
  7. Ban Y, Davies TF, Greenberg DA, Concepcion ES, Osman R, Oashi T, et al. Arginine at position 74 of the HLA-DR β1 chain is associated with Graves’ disease. Genes Immun. 2004;5(3):203–8.CrossRefPubMedGoogle Scholar
  8. Bartalena L, Martino E, Marcocci C, Bogazzi F, Panicucci M, Velluzzi F, et al. More on smoking habits and Graves’ ophthalmopathy. J Endocrinol Investig. 1989;12(10):733–7.CrossRefGoogle Scholar
  9. Bartalena L, Marcocci C, Tanda ML, Manetti L, Dell’Unto E, Bartolomei MP, et al. Cigarette smoking and treatment outcomes in Graves ophthalmopathy. Ann Intern Med. 1998;129(8):632–5.CrossRefPubMedGoogle Scholar
  10. Beever K, Bradbury J, Phillips D, McLachlan SM, Pegg C, Goral A, et al. Highly sensitive assays of autoantibodies to thyroglobulin and to thyroid peroxidase. Clin Chem. 1989;35(9):1949–54.PubMedGoogle Scholar
  11. Biondi BBL, Cooper DS, Hegedus L, Laurberg P, Kahaly GJ. The 2015 European Thyroid Association guidelines on diagnosis and treatment of endogenous subclinical hyperthyroidism. Eur Thyr J. 2015;4(3):149–63.CrossRefGoogle Scholar
  12. Brand OJ, Lowe CE, Heward JM, Franklyn JA, Cooper JD, Todd JA, et al. Association of the interleukin-2 receptor alpha (IL-2Rα)/CD25 gene region with Graves’ disease using a multilocus test and tag SNPs. Clin Endocrinol. 2007;66(4):508–12.Google Scholar
  13. Brix TH, Kyvik KO, Christensen K, Hegedüs L. Evidence for a major role of heredity in Graves’ disease: a population-based study of two Danish twin cohorts. J Clin Endocrinol Metab. 2001;86(2):930–4.PubMedGoogle Scholar
  14. Brix TH, Hansen PS, Hegedüs L, Wenzel BE. Too early to dismiss Yersinia enterocolitica infection in the aetiology of Graves’ disease: evidence from a twin case-control study. ClinEndocrinol. 2008;69:491–6.Google Scholar
  15. Brix TH, Hegedüs L, Weetman AP, Kemp HE. Pendrin and NIS antibodies are absent in healthy individuals and are rare in autoimmune thyroid disease: evidence from a Danish twin study. Clin Endocrinol. 2014;81(3):440–4.CrossRefGoogle Scholar
  16. Bülow Pedersen I, Knudsen N, Carlé A, Schomburg L, Köhrle J, Jørgensen T, et al. Serum selenium is low in newly diagnosed Graves’ disease: a population-based study. Clin Endocrinol. 2013;79(4):584–90.CrossRefGoogle Scholar
  17. Burch HB, Cooper DS. Management of graves disease a review. JAMA. 2015;314(23):2544–54.CrossRefPubMedGoogle Scholar
  18. Chazenbalk GD, Portolano S, Russo D, Hutchison JS, Rapoport B, McLachlan S. Human organ-specific autoimmune disease Molecular cloning and expression of an autoantibody gene repertoire for a major autoantigen reveals an antigenic immunodominant region and restricted immunoglobulin gene usage in the target organ. J Clin Investig. 1993;92(1):62–74.CrossRefPubMedGoogle Scholar
  19. Chazenbalk GD, Pichurin P, Chen CR, Latrofa F, Johnstone AP, McLachlan SM, et al. Thyroid-stimulating autoantibodies in Graves disease preferentially recognize the free A subunit, not the thyrotropin holoreceptor. J Clin Investig. 2002;110(2):209–17.CrossRefPubMedGoogle Scholar
  20. Chen CR, Pichurin P, Nagayama Y, Latrofa F, Rapoport B, McLachlan SM. The thyrotropin receptor autoantigen in Graves disease is the culprit as well as the victim. J Clin Investig. 2003;111(12):1897–904.CrossRefPubMedGoogle Scholar
  21. Chen F, Day SL, Metcalfe RA, Sethi G, Kapembwa MS, Brook MG, et al. Characteristics of autoimmune thyroid disease occurring as a late complication of immune reconstitution in patients with advanced human immunodeficiency virus (HIV) disease. Medicine. 2005;84(2):98–106.CrossRefPubMedGoogle Scholar
  22. Coles AJ, Wing M, Smith S, Coraddu F, Greer S, Taylor C, et al. Pulsed monoclonal antibody treatment and autoimmune thyroid disease in multiple sclerosis. Lancet. 1999;354(9191):1691–5.CrossRefPubMedGoogle Scholar
  23. Collins JE, Heward JM, Carr-Smith J, Daykin J, Franklyn JA, Gough SCL. Association of a rare thyroglobulin gene microsatellite variant with autoimmune thyroid disease. J Clin Endocrinol Metab. 2003;88(10):5039–42.CrossRefPubMedGoogle Scholar
  24. Colobran R, MdP A, Faner R, Gärtner M, Tykocinski L, Lucas A, et al. Association of an SNP with intrathymic transcription of TSHR and Graves’ disease: a role for defective thymic tolerance. Hum Mol Genet. 2011;20(17):3415–23.CrossRefPubMedGoogle Scholar
  25. Costagliola S, Bonomi M, Morgenthaler NG, Van Durme J, Panneels V, Refetoff S, et al. Delineation of the discontinuous-conformational epitope of a monoclonal antibody displaying full in vitro and in vivo thyrotropin activity. Mol Endocrinol. 2004;18(12):3020–34.CrossRefPubMedGoogle Scholar
  26. Criswell LA, Pfeiffer KA, Lum RF, Gonzales B, Novitzke J, Kern M, et al. Analysis of families in the multiple autoimmune disease genetics consortium (MADGC) collection: the PTPN22 620 W allele associates with multiple autoimmune phenotypes. Am J Hum Genet. 2005;76(4):561–71.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Dechairo BM, Zabaneh D, Collins J, Brand O, Dawson GJ, Green AP, et al. Association of the TSHR gene with Graves’ disease: the first disease specific locus. Eur J Hum Genet. 2005;13(11):1223–30.CrossRefPubMedGoogle Scholar
  28. Eckstein A, Quadbeck B, Mueller G, Rettenmeier AW, Hoermann R, Mann K, et al. Impact of smoking on the response to treatment of thyroid associated ophthalmopathy. Br J Ophthalmol. 2003;87(6):773–6.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Eschler DC, Hasham A, Tomer Y. Cutting edge: the etiology of autoimmune thyroid diseases. Clin Rev Allergy Immunol. 2011;41(2):190–7.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Facciani JM, Kazim M. Absence of seasonal variation in Graves disease. Ophthal Plast Reconstr Surg. 2000;16(1):67–71.CrossRefPubMedGoogle Scholar
  31. Farid NR, Sampson L, Noel EP, Barnard JM, Mandeville R, Larsen B, et al. A study of human leukocyte D locus related antigens in Graves’ disease. J Clin Investig. 1979;63(1):108–13.CrossRefPubMedGoogle Scholar
  32. Gora M, Gardas A, Wiktorowicz W, Hobby P, Watson PF, Weetman AP, et al. Evaluation of conformational epitopes on thyroid peroxidase by antipeptide antibody binding and mutagenesis. Clin Exp Immunol. 2004;136(1):137–44.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Grumet FC, Payne RO, Kinishi J, Kriss JP. HL A antigens as markers for disease susceptibility and autoimmunity in Grave’s disease. J Clin Endocrinol Metab. 1974;39(6):1115–9.CrossRefPubMedGoogle Scholar
  34. Hamilton A, Newby PR, Carr-Smith JD, Disanto G, Allahabadia A, Armitage M, et al. Impact of month of birth on the development of autoimmune thyroid disease in the United Kingdom and Europe. J Clin Endocrinol Metab. 2014;99(8):E1459–E65.CrossRefPubMedGoogle Scholar
  35. Hayashi M, Kouki T, Takasu N, Sunagawa S, Komiya I. Association of an A/C single nucleotide polymorphism in programmed cell death-ligand 1 gene with Graves’ disease in Japanese patients. Eur J Endocrinol. 2008;158(6):817–22.CrossRefPubMedGoogle Scholar
  36. Heward JM, Allahabadia A, Daykin J, Carr-Smith J, Daly A, Armitage M, et al. Linkage disequilibrium between the human leukocyte antigen class II region of the major histocompatibility complex and Graves’ disease: replication using a population case control and family-based study. J Clin Endocrinol Metab. 1998;83(10):3394–7.PubMedGoogle Scholar
  37. Hidaka Y, Amino N, Iwatani Y, Itoh E, Matsunaga M, Tamaki H. Recurrence of thyrotoxicosis after attack of allergic rhinitis in patients with Graves’ disease. J Clin Endocrinol Metab. 1993;77(6):1667–70.PubMedGoogle Scholar
  38. Hiratani H, Bowden DW, Ikegami S, Shirasawa S, Shimizu A, Iwatani Y, et al. Multiple SNPs in intron 7 of thyrotropin receptor are associated with Graves’ disease. J Clin Endocrinol Metab. 2005;90(5):2898–903.CrossRefPubMedGoogle Scholar
  39. Hollowell JG, Staehling NW, Dana Flanders W, Harry Hannon W, Gunter EW, Spencer CA, et al. Serum TSH, T4, and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J Clin Endocrinol Metab. 2002;87(2):489–99.CrossRefPubMedGoogle Scholar
  40. Holm IA, Manson JE, Michels KB, Alexander EK, Willett WC, Utiger RD. Smoking and other lifestyle factors and the risk of graves’ hyperthyroidism. Arch Intern Med. 2005;165(14):1606–11.CrossRefPubMedGoogle Scholar
  41. Hou TZ, Qureshi OS, Wang CJ, Baker J, Young SP, Walker LSK, et al. A transendocytosis model of CTLA-4 function predicts its suppressive behavior on regulatory T cells. J Immunol. 2015;194(5):2148–59.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Jacobson EM, Huber A, Tomer Y. The HLA gene complex in thyroid autoimmunity: from epidemiology to etiology. J Autoimmun. 2008;30(1–2):58–62.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Jaume JC, Guo J, Pauls DL, Zakarija M, McKenzie JM, Egeland JA, et al. Evidence for genetic transmission of thyroid peroxidase autoantibody epitopic ‘fingerprints’. J Clin Endocrinol Metab. 1999;84(4):1424–31.PubMedGoogle Scholar
  44. Khoury EL, Hammond L, Bottazzo GF, Doniach D. Presence of the organ-specific ‘microsomal’ autoantigen on the surface of human thyroid cells in culture: its involvement in complement-mediated cytotoxicity. Clin Exp Immunol. 1981;45(2):316–28.PubMedPubMedCentralGoogle Scholar
  45. Krassas GE, Tziomalos K, Pontikides N, Lewy H, Laron Z. Seasonality of month of birth of patients with Graves’ and Hashimoto’s diseases differ from that in the general population. Eur J Endocrinol. 2007;156(6):631–6.CrossRefPubMedGoogle Scholar
  46. Laurberg P, Pedersen KM, Vestergaard H, Sigurdsson G. High incidence of multinodular toxic goitre in the elderly population in a low iodine intake area vs. high incidence of Graves’ disease in the young in a high iodine intake area: comparative surveys of thyrotoxicosis epidemiology in East-Jutland Denmark and Iceland. J Intern Med. 1991;229(5):415–20.CrossRefPubMedGoogle Scholar
  47. Liu W, Wang HN, Gu ZH, Yang SY, Ye XP, Pan CM, et al. Identification of BACH2 as a susceptibility gene for Graves’ disease in the Chinese Han population based on a three-stage genome-wide association study. Hum Genet. 2014;133(5):661–71.CrossRefPubMedGoogle Scholar
  48. Marcocci C, Kahaly GJ, Krassas GE, Bartalena L, Prummel M, Stahl M, et al. Selenium and the course of mild Graves’ orbitopathy. N Engl J Med. 2011;364(20):1920–31.CrossRefPubMedGoogle Scholar
  49. Marinò M, Chiovato L, Lisi S, Altea MA, Marcocci C, Pinchera A. Role of thyroglobulin in the pathogenesis of Graves’ ophthalmopathy: the hypothesis of Kriss revisited. J Endocrinol Investig. 2004;27(3):230–6.CrossRefGoogle Scholar
  50. Minich WB, Dehina N, Welsink T, Schwiebert C, Morgenthaler NG, Köhrle J, Eckstein A, Schomburg L. Autoantibodies to the IGF1 receptor in Graves’ orbitopathy. J Clin Endocrinol Metab. 2013;98(2):752–60.CrossRefPubMedGoogle Scholar
  51. Mitchell AL, Pearce SH. How should we treat patients with low serum thyrotropin concentrations? Clin Endocrinol. 2010;72(3):292–6.CrossRefGoogle Scholar
  52. Mitchell AL, Cordell HJ, Soemedi R, Owen K, Skinningsrud B, Wolff AB, et al. Programmed death ligand 1 (PD-L1) gene variants contribute to autoimmune Addison’s disease and Graves’ disease susceptibility. J Clin Endocrinol Metab. 2009;94(12):5139–45.CrossRefPubMedGoogle Scholar
  53. Mitchell AL, Goss L, Mathiopoulou L, Morris M, Vaidya B, Dickinson AJ, Quinn A, Dayan C, McLaren J, Hickey JL, Lazarus JH, Rose GE, Foley P, MacEwen CJ, Perros P. Diagnosis of Graves’ orbitopathy (DiaGO): results of a pilot study to assess the utility of an office tool for practicing endocrinologists. J Clin Endocrinol Metab. 2015;100(3):E458–62.CrossRefPubMedGoogle Scholar
  54. Mizokami T, Li AW, El-Kaissi S, Wall JR. Stress and thyroid autoimmunity. Thyroid. 2004;14(12):1047–55.CrossRefPubMedGoogle Scholar
  55. Munakata Y, Kodera T, Saito T, Sasaki T. Rheumatoid arthritis, type 1 diabetes, and Graves’ disease after acute parvovirus B19 infection. Lancet. 2005;366(9487):780.CrossRefPubMedGoogle Scholar
  56. Nakashima M, Martin A, Davies TF. Intrathyroidal T cell accumulation in Graves’ disease: delineation of mechanisms based on in situ T cell receptor analysis. J Clin Endocrinol Metab. 1996;81(9):3346–51.PubMedGoogle Scholar
  57. Neumann S, Place RF, Krieger CC, Gershengorn MC. Future prospects for the treatment of Graves’ hyperthyroidism and eye disease. Horm Metab Res. 2015;47(10):789–96.CrossRefPubMedGoogle Scholar
  58. Nyström HF, Jansson S, Berg G. Incidence rate and clinical features of hyperthyroidism in a long-term iodine sufficient area of Sweden (Gothenburg) 2003–2005. Clin Endocrinol. 2013;78(5):768–76.CrossRefGoogle Scholar
  59. Pfeilschifter J, Ziegler R. Smoking and endocrine ophthalmopathy: impact of smoking severity and current vs lifetime cigarette consumption. Clin Endocrinol. 1996;45(4):477–81.CrossRefGoogle Scholar
  60. Prummel MF, Wiersinga WM. Smoking and risk of Graves’ disease. JAMA. 1993;269(4):479–82.CrossRefPubMedGoogle Scholar
  61. Qin Q, Wang X, Yan N, Song RH, Cai TT, Zhang W, Guan LJ, Muhali FS, Zhang JA. Aberrant expression of miRNA and mRNAs in lesioned tissues of Graves’ disease. Cell Physiol Biochem. 2015;35(5):1934–42.CrossRefPubMedGoogle Scholar
  62. Sato A, Takemura Y, Yamada T, Ohtsuka H, Sakai H, Miyahara Y, et al. A possible role of immunoglobulin E in patients with hyperthyroid Graves’ disease. J Clin Endocrinol Metab. 1999;84(10):3602–5.PubMedGoogle Scholar
  63. Simmonds MJ, Howson JMM, Heward JM, Cordell HJ, Foxall H, Carr-Smith J, et al. Regression mapping of association between the human leukocyte antigen region and Graves disease. Am J Hum Genet. 2005;76(1):157–63.CrossRefPubMedGoogle Scholar
  64. Simmonds MJ, Brand OJ, Barrett JC, Newby PR, Franklyn JA, Gough SCL. Association of Fc receptor-like 5 (FCRL5) with Graves’ disease is secondary to the effect of FCRL3. Clin Endocrinol. 2010;73(5):654–60.CrossRefGoogle Scholar
  65. Smith TJ, Hegedüs L. Graves’ Disease. N Engl J Med. 2016;375(16):1552–65.CrossRefPubMedGoogle Scholar
  66. Smith BR, Bolton J, Young S, Collyer A, Weeden A, Bradbury J, et al. A new assay for thyrotropin receptor autoantibodies. Thyroid. 2004;14(10):830–5.CrossRefPubMedGoogle Scholar
  67. Smyth D, Cooper JD, Collins JE, Heward JM, Franklyn JA, Howson JMM, et al. Replication of an association between the lymphoid tyrosine phosphatase locus (LYP/PTPN22) with type 1 diabetes, and evidence for its role as a general autoimmunity locus. Diabetes. 2004;53(11):3020–3.CrossRefPubMedGoogle Scholar
  68. Song HD, Liang J, Shi JY, Zhao SX, Liu Z, Zhao JJ, et al. Functional SNPs in the SCGB3A2 promoter are associated with susceptibility to Graves’ disease. Hum Mol Genet. 2009;18(6):1156–70.CrossRefPubMedGoogle Scholar
  69. Stefan M, Jacobson EM, Huber AK, Greenberg DA, Li CW, Skrabanek L, et al. Novel variant of thyroglobulin promoter triggers thyroid autoimmunity through an epigenetic interferon α-modulated mechanism. J Biol Chem. 2011;286(36):31168–79.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Strieder TGA, Prummel MF, Tijssen JGP, Endert E, Wiersinga WM. Risk factors for and prevalence of thyroid disorders in a cross-sectional study among healthy female relatives of patients with autoimmune thyroid disease. Clin Endocrinol. 2003a;59(3):396–401.CrossRefGoogle Scholar
  71. Strieder TGA, Wenzel BE, Prummel MF, Tijssen JGP, Wiersinga WM. Increased prevalence of antibodies to enteropathogenic Yersinia enterocolitica virulence proteins in relatives of patients with autoimmune thyroid disease. Clin Exp Immunol. 2003b;132(2):278–82.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Strieder TGA, Prummel MF, Tijssen JGP, Brosschot JF, Wiersinga WM. Stress is not associated with thyroid peroxidase autoantibodies in euthyroid women. Brain Behav Immun. 2005;19(3):203–6.CrossRefPubMedGoogle Scholar
  73. Strieder TGA, Tijssen JGP, Wenzel BE, Endert E, Wiersinga WM. Prediction of progression to overt hypothyroidism or hyperthyroidism in female relatives of patients with autoimmune thyroid disease using the thyroid events Amsterdam (THEA) score. Arch Intern Med. 2008;168(15):1657–63.CrossRefPubMedGoogle Scholar
  74. Sutherland A, Davies J, Owen CJ, Vaikkakara S, Walker C, Cheetham TD, et al. Brief report: genomic polymorphism at the interferon-induced helicase (IFIH1) locus contributes to Graves’ disease susceptibility. J Clin Endocrinol Metab. 2007;92(8):3338–41.CrossRefPubMedGoogle Scholar
  75. Tomer Y, Davies TF. Infection, thyroid disease, and autoimmunity. Endocr Rev. 1993;14(1):107–20.PubMedGoogle Scholar
  76. Tomer Y, Concepcion E, Greenberg DA. A C/T single-nucleotide polymorphism in the region of the CD40 gene is associated with Graves’ disease. Thyroid. 2002a;12(12):1129–35.CrossRefPubMedGoogle Scholar
  77. Tomer Y, Greenberg DA, Concepcion E, Ban Y, Davies TF. Thyroglobulin is a thyroid specific gene for the familial autoimmune thyroid diseases. J Clin Endocrinol Metab. 2002b;87(1):404–7.CrossRefPubMedGoogle Scholar
  78. Ueda H, Howson JMM, Esposito L, Heward J, Snook H, Chamberlain G, et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature. 2003;423(6939):506–11.CrossRefPubMedGoogle Scholar
  79. Vaidya B, Pearce S. The emerging role of the CTLA-4 gene in autoimmune endocrinopathies. Eur J Endocrinol. 2004;150(5):619–26.CrossRefPubMedGoogle Scholar
  80. Vaidya B, Pearce SH. Diagnosis and management of thyrotoxicosis. BMJ. 2014;349:g5128.CrossRefPubMedGoogle Scholar
  81. Vaidya B, Imrie H, Perros P, Young ET, Kelly WF, Carr D, et al. The cytotoxic T lymphocyte antigen-4 is a major Graves’ disease locus. Hum Mol Genet. 1999;8(7):1195–9.CrossRefPubMedGoogle Scholar
  82. Vaidya B, Kendall-Taylor P, Pearce SHS. Genetics of endocrine disease: the genetics of autoimmune thyroid disease. J Clin Endocrinol Metab. 2002;87(12):5385–97.CrossRefPubMedGoogle Scholar
  83. Vanderpump MPJ, Tunbridge WMG, French JM, Appleton D, Bates D, Clark F, et al. The incidence of thyroid disorders in the community: a twenty-year follow-up of the Whickham Survey. Clin Endocrinol. 1995;43(1):55–68.CrossRefGoogle Scholar
  84. Vang T, Congia M, Macis MD, Musumeci L, Orrú V, Zavattari P, et al. Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nat Genet. 2005;37(12):1317–9.CrossRefPubMedGoogle Scholar
  85. Velaga MR, Wilson V, Jennings CE, Owen CJ, Herington S, Donaldson PT, et al. The codon 620 tryptophan allele of the Lymphoid Tyrosine Phosphatase (LYP) gene is a major determinant of Graves’ disease. J Clin Endocrinol Metab. 2004;89(11):5862–5.CrossRefPubMedGoogle Scholar
  86. Weetman AP. Graves’ disease following immune reconstitution or immunomodulatory treatment: should we manage it any differently? Clin Endocrinol. 2014;80(5):629–32.CrossRefGoogle Scholar
  87. Weetman AP, Cohen S. The IgG subclass distribution of thyroid autoantibodies. Immunol Lett. 1986;13(6):335–41.CrossRefPubMedGoogle Scholar
  88. Weetman AP, McGregor AM, Lazarus JH, Hall R. Thyroid antibodies are produced by thyroid derived lymphocytes. Clin Exp Immunol. 1982;48(1):196–200.PubMedPubMedCentralGoogle Scholar
  89. Wiersinga WM. Smoking and thyroid. Clin Endocrinol. 2013;79(2):145–51.CrossRefGoogle Scholar
  90. Winsa B, Karlsson A, Bergstrom R, Adami HO, Gamstedt A, Jansson R, et al. Stressful life events and Graves’ disease. Lancet. 1991;338(8781):1475–9.CrossRefPubMedGoogle Scholar
  91. Yanagawa T, DeGroot LJ. HLA class II associations in African-American female patients with Graves’ disease. Thyroid. 1996;6(1):37–9.CrossRefPubMedGoogle Scholar
  92. Yanagawa T, Mangklabruks A, Chang YB, Okamoto Y, Fisfalen ME, Curran PG, et al. Human histocompatibility leukocyte antigen-DQA1*0501 allele associated with genetic susceptibility to graves’ disease in a caucasian population. J Clin Endocrinol Metab. 1993;76(6):1569–74.PubMedGoogle Scholar
  93. Yanagawa T, Hidaka Y, Guimaraes V, Soliman M, DeGroot LJ. CTLA-4 gene polymorphism associated with Graves’ disease in a Caucasian population. J Clin Endocrinol Metab. 1995;80(1):41–5.PubMedGoogle Scholar
  94. Yasuda T, Okamoto Y, Hamada N, Miyashita K, Takahara M, Sakamoto F, et al. Serum vitamin D levels are decreased and associated with thyroid volume in female patients with newly onset Graves’ disease. Endocrine. 2012;42(3):739–41.CrossRefPubMedPubMedCentralGoogle Scholar
  95. Yasuda T, Okamoto Y, Hamada N, Miyashita K, Takahara M, Sakamoto F, et al. Serum vitamin D levels are decreased in patients without remission of Graves’ disease. Endocrine. 2013;43(1):230–2.CrossRefPubMedGoogle Scholar
  96. Yoshiuchi K, Kumano H, Nomura S, Yoshimura H, Ito K, Kanaji Y, et al. Stressful life events and smoking were associated with Graves’ disease in women, but not in men. Psychosom Med. 1998;60(2):182–5.CrossRefPubMedGoogle Scholar
  97. Zimmermann MB, Boelaert K. Iodine deficiency and thyroid disorders. Lancet Diabet Endocrinol. 2015;3(4):286–95.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Genetic MedicineNewcastle UniversityNewcastle upon TyneUK

Personalised recommendations