Incorporating the Element of Stochasticity in Coarse-Grained Modeling of Materials Mechanics

Reference work entry


Materials are, by their very nature, stochastic. Modeling materials across scales requires models that capture this inherent stochasticity. In this chapter, preceding a section on stochastic, coarse-grained models, we examine the elements of stochasticity and coarse-graining and the different implementations of each. Examples of the methods are also briefly discussed.



ERH was supported by the National Science Foundation under Award no. DMR-1507095. YC was supported by the National Science Foundation under Award no. DMR-1352524.


  1. Askari H, Maughan MR, Abdolrahim N, Sagapuram D, Bahr DF, Zbib HM (2015) A stochastic crystal plasticity framework for deformation of micro-scale polycrystalline materials. Int J Plast 68:21–33. CrossRefGoogle Scholar
  2. Beden SM, Abdullah S, Ariffin AK (2009) Review of fatigue crack propagation models for metallic components. Eur J Sci Res 28(3):364–397Google Scholar
  3. Bhattacharya K (2012) Microstructure of martensite: why it forms and how it gives rise to the shape-memory effect. Oxford University Press, OxfordzbMATHGoogle Scholar
  4. Born M, Einstein A (1971) The Born-Einstein letters. Macmillan, LondonGoogle Scholar
  5. Christian JW (2002) The theory of transformations in metals and alloys. Pergamon, AmsterdamGoogle Scholar
  6. Ellyin F (1997) Fatigue damage, crack growth and life prediction. Chapman & Hall, London. Google Scholar
  7. Gayda J, Srolovitz DJ (1989) A Monte Carlo-finite element model for strain energy controlled microstructural evolution: “rafting” in superalloys. Acta Metallurgica Et Materialia 37(2):641–650. CrossRefGoogle Scholar
  8. Ghanem R, Spanos PD (1990) Polynomial chaos in stochastic finite elements. J Appl Mech 57(1):197–202. CrossRefGoogle Scholar
  9. Guilleminot J, Soize C, Kondo D (2009) Mesoscale probabilistic models for the elasticity tensor of fiber reinforced composites: experimental identification and numerical aspects. Mech Mater 41(12):1309–1322. CrossRefGoogle Scholar
  10. Hemminger J, Crabtree G, Sarrao J (eds) (2012) From quanta to the continuum: opportunities for mesoscale science. A report for the Basic Energy Sciences Advisory Committee, Department of Energy. Google Scholar
  11. Janssens KG, Raabe D, Kozeschnik E, Miodownik MA, Nestler B (2007) Computational materials engineering: an introduction to microstructure evolution. Academic Press, BostonGoogle Scholar
  12. Kondori B, Amine Benzerga A, Needleman A (2018) Discrete shear-transformation-zone plasticity modeling of notched bars. J Mech Phys Solids 111:18–42. ADSMathSciNetCrossRefGoogle Scholar
  13. Kouchmeshky B, Zabaras N (2010) Microstructure model reduction and uncertainty quantification in multiscale deformation processes. Comput Mater Sci 48(2):213–227. CrossRefGoogle Scholar
  14. Kozin F, Bogdanoff JL (1989) Recent thoughts on probabilistic fatigue crack growth. Appl Mech Rev 42(11S):S121–S127. ADSCrossRefGoogle Scholar
  15. Lebyodkin MA, Estrin Y (2005) Multifractal analysis of the Portevin–Le Chatelier effect: general approach and application to AlMg and AlMg/Al2O3 alloys. Acta Mater 53(12):3403–3413. CrossRefGoogle Scholar
  16. Li L, Anderson PM (2016) Quantized crystal plasticity modeling of nanocrystalline metals. In: Weinberger CR, Tucker GJ (eds) Multiscale materials modeling for nanomechanics. Springer International Publishing, Cham, pp 413–440. CrossRefGoogle Scholar
  17. Mahata A, Mukhopadhyay T, Adhikari S (2016) A polynomial chaos expansion based molecular dynamics study for probabilistic strength analysis of nano-twinned copper. Mater Res Express 3(3):036501. ADSCrossRefGoogle Scholar
  18. Miyamoto G, Iwata N, Takayama N, Furuhara T (2013) Variant selection of lath martensite and bainite transformation in low carbon steel by ausforming. J Alloys Compd 577:S528–S532. CrossRefGoogle Scholar
  19. Packard CE, Franke O, Homer ER, Schuh CA (2010) Nanoscale strength distribution in amorphous versus crystalline metals. J Mater Res 25(12):2251–2263. ADSCrossRefGoogle Scholar
  20. Perondi LF, Elliott RJ, Barrio RA, Kaski K (1994) Tracer diffusion in lattices with double occupancy of sites. Phys Rev B 50(14):9868–9874. ADSCrossRefGoogle Scholar
  21. Provis JL (2015) Grand challenges in structural materials. Front Mater 2:31. ADSCrossRefGoogle Scholar
  22. Rollett AD, Manohar P (2005) The Monte Carlo method. In: Raabe D, Roters F, Barlat F, Chen LQ (eds) Continuum scale simulation of engineering materials. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 77–114. CrossRefGoogle Scholar
  23. Roters F, Eisenlohr P, Hantcherli L, Tjahjanto DD, Bieler TR, Raabe D (2010) Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater 58(4):1152–1211. CrossRefGoogle Scholar
  24. Soize C (2006) Non-Gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators. Comput Methods Appl Mech Eng 195(1–3):26–64. ADSMathSciNetCrossRefGoogle Scholar
  25. Soize C (2012) Stochastic models of uncertainties in computational mechanics. ACSE, RestonCrossRefGoogle Scholar
  26. Tadmor EB, Miller RE (2011) Modeling materials. Continuum, atomistic and multiscale techniques. Cambridge University Press, CambridgeGoogle Scholar
  27. Talamali M, Petäjä V, Vandembroucq D, Roux S (2012) Strain localization and anisotropic correlations in a mesoscopic model of amorphous plasticity. Comptes Rendus Mecanique 340(4–5):275–288. ADSCrossRefGoogle Scholar
  28. Uchic MD, Dimiduk DM, Florando JN, Nix WD (2004) Sample dimensions influence strength and crystal plasticity. Science 305(5686):986–989. ADSCrossRefGoogle Scholar
  29. Voter AF (2007) Introduction to the Kinetic Monte Carlo method. In: Sickafus KE, Kotomin EA, Uberuaga BP (eds) Radiation effects in solids. Springer, Dordrecht, pp 1–23. Google Scholar
  30. Yip S, Short MP (2013) Multiscale materials modelling at the mesoscale. Nat Mater 12(9):774–777. ADSCrossRefGoogle Scholar
  31. Zhao P, Li J, Wang Y (2013) Heterogeneously randomized STZ model of metallic glasses: softening and extreme value statistics during deformation. Int J Plast 40:1–22. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringBrigham Young UniversityProvoUSA
  2. 2.Department of Materials Science and EngineeringRensselaer Polytechnic InstituteTroyUSA
  3. 3.Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations