Quantum Monte Carlo for Electronic Systems Containing d and f Electrons

Reference work entry


This article briefly summarizes how to use standard fixed-node diffusion Monte Carlo to obtain accurate results for materials containing d and f electrons.



This work was supported in part by the Simons Collaboration on the many-electron problem.


  1. Burkatzki M, Filippi C, Dolg M (2007) Energy-consistent pseudopotentials for quantum Monte Carlo calculations. J Chem Phys 126(23):234105–234105–8.,
  2. Busemeyer B, Dagrada M, Sorella S, Casula M, Wagner LK (2016) Competing collinear magnetic structures in superconducting FeSe by first principles quantum Monte Carlo calculations. Phys. Rev. B 94:035108ADSCrossRefGoogle Scholar
  3. Ceperley DM, Alder BJ (1980) Ground state of the electron gas by a stochastic method. Phys Rev Lett 45(7):566–569. ADSCrossRefGoogle Scholar
  4. Chiesa S, Ceperley D, Martin R, Holzmann M (2006) Finite-size error in many-body simulations with long-range interactions. Phys Rev Lett 97(7).
  5. Esler KP, Cohen RE, Militzer B, Kim J, Needs RJ, Towler MD (2010) Fundamental high-pressure calibration from all-electron quantum Monte Carlo calculations. Phys Rev Lett 104(18):185702. ADSCrossRefGoogle Scholar
  6. Foyevtsova K, Krogel JT, Kim J, Kent PRC, Dagotto E, Reboredo FA (2014) Ab initio quantum Monte Carlo calculations of spin superexchange in cuprates: the Benchmarking case of Ca2CuO3. Phys Rev X 4(3):031003. Google Scholar
  7. Hood RQ, Kent PRC, Reboredo FA (2012) Diffusion quantum Monte Carlo study of the equation of state and point defects in aluminum. Phys Rev B 85(13):134109. ADSCrossRefGoogle Scholar
  8. Kolorenč J, Mitas L (2008) Quantum Monte Carlo calculations of structural properties of FeO under pressure. Phys Rev Lett 101(18):185502. ADSCrossRefGoogle Scholar
  9. Kolorenč J, Mitas L (2011) Applications of quantum Monte Carlo methods in condensed systems. Rep Prog Phys 74(2):026502.,
  10. Lee JW, Mitas L, Wagner LK (2004) Quantum Monte Carlo study of MnO solid. arXiv:cond-mat/0411247.
  11. Mitra C, Krogel JT, Santana JA, Reboredo FA (2015) Many-body ab initio diffusion quantum Monte Carlo applied to the strongly correlated oxide NiO. J Chem Phys 143(16):164710.,
  12. Pozzo M, Alfè D (2008) Structural properties and enthalpy of formation of magnesium hydride from quantum Monte Carlo calculations. Phys Rev B 77(10):104103. ADSCrossRefGoogle Scholar
  13. Santana JA, Krogel JT, Kim J, Kent PRC, Reboredo FA (2015) Structural stability and defect energetics of ZnO from diffusion quantum Monte Carlo. J Chem Phys 142(16):164705.,
  14. Santana JA, Krogel JT, Kent PRC, Reboredo FA (2016) Cohesive energy and structural parameters of binary oxides of groups IIA and IIIB from diffusion quantum Monte Carlo. J Chem Phys 144(17):174707.,
  15. Schiller JA, Wagner LK, Ertekin E (2015) Phase stability and properties of manganese oxide polymorphs: assessment and insights from diffusion Monte Carlo. Phys Rev B 92(23):235209. ADSCrossRefGoogle Scholar
  16. Shin H, Kang S, Koo J, Lee H, Kim J, Kwon Y (2014) Cohesion energetics of carbon allotropes: quantum Monte Carlo study. J Chem Phys 140(11):114702.,
  17. Trail JR, Needs RJ (2015) Correlated electron pseudopotentials for 3D-transition metals. J Chem Phys 142(6):064110.,
  18. Wagner LK, Abbamonte P (2014) Effect of electron correlation on the electronic structure and spin-lattice coupling of high-Tc cuprates: quantum Monte Carlo calculations. Phys Rev B 90(12):125129. ADSCrossRefGoogle Scholar
  19. Wagner LK, Mitas L (2007) Energetics and dipole moment of transition metal monoxides by quantum Monte Carlo. J Chem Phys 126(3):034105–034105–5.,
  20. Yu J, Wagner LK, Ertekin E (2015) Towards a systematic assessment of errors in diffusion Monte Carlo calculations of semiconductors: case study of zinc selenide and zinc oxide. J Chem Phys 143(22):224707.,
  21. Zheng H, Wagner LK (2015) Computation of the Correlated metal-insulator transition in vanadium dioxide from first principles. Phys Rev Lett 114(17):176401. ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations