Advertisement

Quantum Monte Carlo for Electronic Systems Containing d and f Electrons

  • Lucas K. WagnerEmail author
Reference work entry
  • 41 Downloads

Abstract

This article briefly summarizes how to use standard fixed-node diffusion Monte Carlo to obtain accurate results for materials containing d and f electrons.

Notes

Acknowledgments

This work was supported in part by the Simons Collaboration on the many-electron problem.

References

  1. Burkatzki M, Filippi C, Dolg M (2007) Energy-consistent pseudopotentials for quantum Monte Carlo calculations. J Chem Phys 126(23):234105–234105–8. https://doi.org/doi:10.1063/1.2741534, http://jcp.aip.org/resource/1/jcpsa6/v126/i23/p234105_s1
  2. Busemeyer B, Dagrada M, Sorella S, Casula M, Wagner LK (2016) Competing collinear magnetic structures in superconducting FeSe by first principles quantum Monte Carlo calculations. Phys. Rev. B 94:035108ADSCrossRefGoogle Scholar
  3. Ceperley DM, Alder BJ (1980) Ground state of the electron gas by a stochastic method. Phys Rev Lett 45(7):566–569. http://link.aps.org/doi/10.1103/PhysRevLett.45.566 ADSCrossRefGoogle Scholar
  4. Chiesa S, Ceperley D, Martin R, Holzmann M (2006) Finite-size error in many-body simulations with long-range interactions. Phys Rev Lett 97(7). http://link.aps.org/doi/10.1103/PhysRevLett.97.076404
  5. Esler KP, Cohen RE, Militzer B, Kim J, Needs RJ, Towler MD (2010) Fundamental high-pressure calibration from all-electron quantum Monte Carlo calculations. Phys Rev Lett 104(18):185702. http://link.aps.org/doi/10.1103/PhysRevLett.104.185702 ADSCrossRefGoogle Scholar
  6. Foyevtsova K, Krogel JT, Kim J, Kent PRC, Dagotto E, Reboredo FA (2014) Ab initio quantum Monte Carlo calculations of spin superexchange in cuprates: the Benchmarking case of Ca2CuO3. Phys Rev X 4(3):031003. http://link.aps.org/doi/10.1103/PhysRevX.4.031003 Google Scholar
  7. Hood RQ, Kent PRC, Reboredo FA (2012) Diffusion quantum Monte Carlo study of the equation of state and point defects in aluminum. Phys Rev B 85(13):134109. http://link.aps.org/doi/10.1103/PhysRevB.85.134109 ADSCrossRefGoogle Scholar
  8. Kolorenč J, Mitas L (2008) Quantum Monte Carlo calculations of structural properties of FeO under pressure. Phys Rev Lett 101(18):185502. http://link.aps.org/doi/10.1103/PhysRevLett.101.185502 ADSCrossRefGoogle Scholar
  9. Kolorenč J, Mitas L (2011) Applications of quantum Monte Carlo methods in condensed systems. Rep Prog Phys 74(2):026502. https://doi.org/10.1088/0034-4885/74/2/026502, http://iopscience.iop.org/0034-4885/74/2/026502
  10. Lee JW, Mitas L, Wagner LK (2004) Quantum Monte Carlo study of MnO solid. arXiv:cond-mat/0411247. http://arxiv.org/abs/cond-mat/0411247
  11. Mitra C, Krogel JT, Santana JA, Reboredo FA (2015) Many-body ab initio diffusion quantum Monte Carlo applied to the strongly correlated oxide NiO. J Chem Phys 143(16):164710. https://doi.org/10.1063/1.4934262, http://scitation.aip.org/content/aip/journal/jcp/143/16/10.1063/1.4934262
  12. Pozzo M, Alfè D (2008) Structural properties and enthalpy of formation of magnesium hydride from quantum Monte Carlo calculations. Phys Rev B 77(10):104103. http://link.aps.org/doi/10.1103/PhysRevB.77.104103 ADSCrossRefGoogle Scholar
  13. Santana JA, Krogel JT, Kim J, Kent PRC, Reboredo FA (2015) Structural stability and defect energetics of ZnO from diffusion quantum Monte Carlo. J Chem Phys 142(16):164705. https://doi.org/10.1063/1.4919242, http://scitation.aip.org/content/aip/journal/jcp/142/16/10.1063/1.4919242
  14. Santana JA, Krogel JT, Kent PRC, Reboredo FA (2016) Cohesive energy and structural parameters of binary oxides of groups IIA and IIIB from diffusion quantum Monte Carlo. J Chem Phys 144(17):174707. https://doi.org/10.1063/1.4947569, http://scitation.aip.org/content/aip/journal/jcp/144/17/10.1063/1.4947569
  15. Schiller JA, Wagner LK, Ertekin E (2015) Phase stability and properties of manganese oxide polymorphs: assessment and insights from diffusion Monte Carlo. Phys Rev B 92(23):235209. http://link.aps.org/doi/10.1103/PhysRevB.92.235209 ADSCrossRefGoogle Scholar
  16. Shin H, Kang S, Koo J, Lee H, Kim J, Kwon Y (2014) Cohesion energetics of carbon allotropes: quantum Monte Carlo study. J Chem Phys 140(11):114702. https://doi.org/10.1063/1.4867544, http://scitation.aip.org/content/aip/journal/jcp/140/11/10.1063/1.4867544
  17. Trail JR, Needs RJ (2015) Correlated electron pseudopotentials for 3D-transition metals. J Chem Phys 142(6):064110. https://doi.org/10.1063/1.4907589, http://aip.scitation.org/doi/abs/10.1063/1.4907589
  18. Wagner LK, Abbamonte P (2014) Effect of electron correlation on the electronic structure and spin-lattice coupling of high-Tc cuprates: quantum Monte Carlo calculations. Phys Rev B 90(12):125129. http://link.aps.org/doi/10.1103/PhysRevB.90.125129 ADSCrossRefGoogle Scholar
  19. Wagner LK, Mitas L (2007) Energetics and dipole moment of transition metal monoxides by quantum Monte Carlo. J Chem Phys 126(3):034105–034105–5. https://doi.org/doi:10.1063/1.2428294, http://jcp.aip.org.proxy2.library.illinois.edu/resource/1/jcpsa6/v126/i3/p034105_s1
  20. Yu J, Wagner LK, Ertekin E (2015) Towards a systematic assessment of errors in diffusion Monte Carlo calculations of semiconductors: case study of zinc selenide and zinc oxide. J Chem Phys 143(22):224707. https://doi.org/10.1063/1.4937421, http://scitation.aip.org/content/aip/journal/jcp/143/22/10.1063/1.4937421
  21. Zheng H, Wagner LK (2015) Computation of the Correlated metal-insulator transition in vanadium dioxide from first principles. Phys Rev Lett 114(17):176401. http://link.aps.org/doi/10.1103/PhysRevLett.114.176401 ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations