Advances in Discrete Dislocation Dynamics Simulations

Reference work entry


Over the past few decades, discrete dislocation dynamics, a modeling framework allowing for the simulation of the collective motion and interactions of dislocations in crystalline media, has been the subject of intense development worldwide. In recent years, a series of novel numerical algorithms, chemo-mechanical frameworks, and applications have been proposed. These advances have taken the field closer to enabling predictions of the mechanical response of engineering polycrystals, e.g., textured crystalline aggregates with impurities. Further, interesting pathways have been proposed to bridge discrete dislocation dynamics simulations with harmonic transition state theory, thereby delineating potential routes for performing coarse graining from the viewpoint of thermodynamics. This chapter summarizes some of the important recent contributions in the field of discrete dislocation dynamics.



RL wants to acknowledge the support of the National Science Foundation under Award Number DMR-1308430 for development of an FFT-based dislocation dynamics method. His work on polycrystal plasticity development was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Science and Engineering Division and was performed at the Ames Laboratory, which is operated for the U.S. DOE by Iowa State University under contract # DE-AC02-07CH11358. LC would like thank support from the US Department of Energy, Office of Basic Energy Sciences (OBES) FWP-06SCPE401.


  1. Anderson PM, Hirth JP, Lothe J (2017) Theory of dislocations, 3rd edn. Cambridge University Press, New YorkzbMATHGoogle Scholar
  2. Arsenlis A, Cai W, Tang M, Rhee M, Oppelstrup T, Hommes G, Pierce TG, Bulatov VV (2007) Enabling strain hardening simulations with dislocation dynamics. Model Simul Mater Sci Eng 15:554–595ADSCrossRefGoogle Scholar
  3. Aubry S, Arsenlis A (2013) Use of spherical harmonics for dislocation dynamics in anisotropic elastic media. Model Simul Mater Sci Eng 21:065013ADSCrossRefGoogle Scholar
  4. Bacon DJ (1992) Dislocations in crystals. In: Gerold Va (ed) Materials science and technology: a comprehensive treatment, vol 1. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 411–482Google Scholar
  5. Bako B, Clouet E, Dupuy LM, Bletry M (2011) Dislocation dynamics simulations with climb: kinetics of dislocation loop coarsening controlled by bulk diffusion. Philos Mag 91:3173–3191ADSCrossRefGoogle Scholar
  6. Balint DS, Deshpande VS, Needleman A, Van der Giessen E (2008) Discrete dislocation plasticity analysis of the grain size dependence of the flow strength of polycrystals. Int J Plast 24:2149–2172zbMATHCrossRefGoogle Scholar
  7. Bertin N, Capolungo L (2018) A FFT-based formulation for discrete dislocation dynamics in heterogeneous media. J Comput Phys 355(Supplement C):366–384Google Scholar
  8. Bertin N, Upadhyay MV, Pradalier C, Capolungo L (2015) A FFT-based formulation for efficient mechanical fields computation in isotropic and anisotropic periodic discrete dislocation dynamics. Model Simul Mater Sci Eng 56:065009ADSCrossRefGoogle Scholar
  9. Braislford A, Bullough R (1981) The theory of sink strengths. Philos Trans R Soc Lond Ser A Math Phys Sci 302:87–137ADSGoogle Scholar
  10. Bulatov VV, Cai W (2006) Computer simulations of dislocations. Oxford, New YorkzbMATHGoogle Scholar
  11. Bulatov VV, Hsiung LL, Tang M, Arsenlis A, Bartelt MC, Cai W, Florando JN, Hiratani M, Rhee M, Hommes G, Pierce TG, Diaz de la Rubia T (2006) Dislocation multi-junctions and strain hardening. Nature 440:1174–1178ADSCrossRefGoogle Scholar
  12. Cai W, Bulatov VV (2006) A non-singular continuum theory of dislocations. J Mech Phys Solids 54:561–587ADSMathSciNetzbMATHCrossRefGoogle Scholar
  13. Capolungo L, Spearot D, Cherkaoui M, McDowell D, Qu J, Jacob K (2007) Dislocation nucleation from bicrystal interfaces and grain boundary ledges: relationship to nanocrystalline deformation. J Mech Phys Solids 55:2300–2327ADSzbMATHCrossRefGoogle Scholar
  14. Chaussidon J, Robertson C, Rodney D, Fivel M (2008) Dislocation dynamics simulations of plasticity in fe laths at low temperature. Acta Mater 56:5466–5476CrossRefGoogle Scholar
  15. Clouet E, Ventelon L, Willaime F (2009) Dislocation core energies and core fields from first principles. Phys Rev Lett 102:055502ADSCrossRefGoogle Scholar
  16. Danas K, Deshpande VS (2013) Plane-strain discrete dislocation plasticity with climb-assisted glide motion of dislocations. Model Simul Mater Sci Eng 21:045008ADSCrossRefGoogle Scholar
  17. de Sansal C, Devincre B, Kubin L (2010) Grain size strengthening in microcrystalline copper: a three-dimensional dislocation dynamics simulation. In: Mechanical properties of solids XI. Key engineering materials, vol 423. Trans Tech Publications, Uetikon-Zuerich, pp 25–32Google Scholar
  18. Devincre B, Kubin LP (1997) Mesoscopic simulations of dislocations and plasticity. Mater Sci Eng A 234–236:8–14CrossRefGoogle Scholar
  19. de Wit R (1960) The continuum theory of stationary dislocations. Solid State Phys 10:249–292CrossRefGoogle Scholar
  20. Fan H, Aubry S, Arsenlis A, El-Awady JA (2015a) Orientation influence on grain size effects in ultrafine-grained magnesium. Scr Mater 97:25–28CrossRefGoogle Scholar
  21. Fan H, Aubry S, Arsenlis A, El-Awady JA (2015b) The role of twinning deformation on the hardening response of polycrystalline magnesium from discrete dislocation dynamics simulations. Acta Mater 92:126–139CrossRefGoogle Scholar
  22. Fan H, Aubry S, Arsenlis A, El-Awady JA (2016) Grain size effects on dislocation and twinning mediated plasticity in magnesium. Scr Mater 112:50–52CrossRefGoogle Scholar
  23. Fivel M (2008a) Discrete dislocation dynamics: principles and recent applications. In: Cazacu O (ed) Multiscale modeling of heterogenous materials: from microstructure to macro-scale properties. Wiley, New York, pp 17–36CrossRefGoogle Scholar
  24. Fivel MC (2008b) Discrete dislocation dynamics: an important recent break-through in the modelling of dislocation collective behaviour. Comptes Rendus Physique 9:427–436ADSCrossRefGoogle Scholar
  25. Froseth A, Derlet P, Swygenhoven HV (2004) Dislocations emitted from nanocrystalline grain boundaries: nucleation and splitting distance. Acta Mater 52:5863–5870CrossRefGoogle Scholar
  26. Frost H, Ashby M (1982) Deformation mechanism maps: the plasticity and creep of metals and ceramics. Pergamon Press, OxfordGoogle Scholar
  27. Gao S, Fivel M, Ma A, Hartmaier A (2017) 3D discrete dislocation dynamics study of creep behavior in ni-base single crystal superalloys by a combined dislocation climb and vacancy diffusion model. J Mech Phys Solids 102:209–223ADSCrossRefGoogle Scholar
  28. Gardner DJ, Woodward CS, Reynolds DR, Hommes G, Aubry S, Arsenlis A (2015) Implicit integration methods for dislocation dynamics. Model Simul Mater Sci Eng 23:025006ADSCrossRefGoogle Scholar
  29. Geiser J (2009) Decomposition methods for differential equations. CRC Press, Boca RatonzbMATHCrossRefGoogle Scholar
  30. Geslin PA, Gatti R, Devincre B, Rodney D (2017) Implementation of the nudged elastic band method in a dislocation dynamics formalism: application to dislocation nucleation. J Mech Phys Solids 108:49–67ADSMathSciNetCrossRefGoogle Scholar
  31. Ghoniem NM, Sun LZ (1999) Fast-sum method for the elastic field off three-dimensional dislocation ensembles. Phys Rev B 60:128–140ADSCrossRefGoogle Scholar
  32. Ghoniem N, Tong S, Sun L (2000) Parametric dislocation dynamics: a thermodynamics-based approach to investigations of mesoscopic plastic deformation. Phys Rev B 61:913–927ADSCrossRefGoogle Scholar
  33. Graham JT, Rollett AD, LeSar R (2016) Fast-fourier transform discrete dislocation dynamics. Model Simul Mater Sci Eng 24:085005ADSCrossRefGoogle Scholar
  34. Graham JT, LeSar R, Capolungo L (2019, in preparation) Discrete dislocation dynamics based polycrystal plasticityGoogle Scholar
  35. Greer JR, Weinberger CR, Cai W (2008) Comparing the strength of f.c.c. and b.c.c. sub-micrometer pillars: compression experiments and dislocation dynamics simulations. Mater Sci Eng A 493:21–25CrossRefGoogle Scholar
  36. Henkelman G, Jonsson H (2000) Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J Chem Phys 113:9978–9985ADSCrossRefGoogle Scholar
  37. Hirth J, Pond R (1996) Steps, dislocations and disconnections as interface defects relating to structure and phase transformations. Acta Mater 44:4749–4763CrossRefGoogle Scholar
  38. Hirth JP, Zbib HM, Lothe J (1998) Forces on high velocity dislocations. Model Simul Mater Sci Eng 6:165–169ADSCrossRefGoogle Scholar
  39. Hoagland RG, Hirth JP, Misra A (2006) On the role of weak interfaces in blocking slip in nanoscale layered composites. Philos Mag 86:3537–3558ADSCrossRefGoogle Scholar
  40. Hull D, Bacon DJ (2001) Introduction to dislocations, 4th edn. Butterworth Heinemann, OxfordGoogle Scholar
  41. Jonsson H, Mills G, Jacobsen KW (1998) Nudged elastic band method for finding minimum energy paths of transitions. In: Berne BJ, Ciccotti G, Coker DF (eds.) Classical and Quantum Dynamics in Condensed Phase Simulations, World scientific, Singapore, pp 385–404CrossRefGoogle Scholar
  42. Keralavarma S, Benzerga A (2015) High-temperature discrete dislocation plasticity. J Mech Phys Solids 82:1–22ADSMathSciNetCrossRefGoogle Scholar
  43. Keralavarma SM, Cagin T, Arsenlis A, Benzerga AA (2012) Power-law creep from discrete dislocation dynamics. Phys Rev Lett 109:265504ADSCrossRefGoogle Scholar
  44. Kombaiah B, Murty KL (2015) High temperature creep and deformation microstructures in recrystallized zircaloy-4. Philos Mag B 95:1656–1679ADSCrossRefGoogle Scholar
  45. Kubin LP (2013) Dislocations, mesoscale simulations and plastic flow. Oxford University Press, OxfordCrossRefGoogle Scholar
  46. Kubin LP, Canova G (1992) The modelling of dislocation patterns. Scr Met Mater 27:957–962CrossRefGoogle Scholar
  47. Lebensohn RA (2001) N-site modeling of a 3D viscoplastic polycrystal using fast fourier transform. Acta Mater 49:2723–2737CrossRefGoogle Scholar
  48. Lebensohn RA, Kanjarla KA, Eisenlohr P (2012) An elasto-viscoplastic formulation based on fast fourier transforms for the prediction of micromechanical fields in polycrystalline materials. Int J Plast 32–33:59–69CrossRefGoogle Scholar
  49. Lemarchand C, Devincre B, Kubin LP (2001) Homogenization method for a discrete-continuum simulation of dislocation dynamics. J Mech Phys Solids 49:1969–1982ADSzbMATHCrossRefGoogle Scholar
  50. LeSar R (2014) Simulations of dislocation structure and response. Ann Rev Condens Matter Phys 5:375–407. Scholar
  51. Liu B, Raabe D, Roters F, Eisenlohr P, Lebensohn RA (2010) Comparison of finite element and fast Fourier transform crystal plasticity solvers for texture prediction. Model Simul Mater Sci Eng 18:085005ADSCrossRefGoogle Scholar
  52. Liu B, Arsenlis A, Aubry S (2016) Computing forces on interface elements exerted by dislocations in an elastically anisotropic crystalline material. Model Simul Mater Sci Eng 24:055013ADSCrossRefGoogle Scholar
  53. Madec R, Devincre B, Kubin L, Hoc T, Rodney D (2003) The role of collinear interaction in dislocation-induced hardening. Science 301(5641):1879–1882ADSCrossRefGoogle Scholar
  54. Marinica MC, Willaime F, Mousseau N (2011) Energy landscape of small clusters of self-interstitial dumbbells in iron. Phys Rev B 83:094119ADSCrossRefGoogle Scholar
  55. McDowell DL (1997) Evolving structure and internal state variables. Nadai award lecture. ASME IMECE, DallasGoogle Scholar
  56. McDowell DL (1999) Non-associative aspects of multiscale evolutionary phenomena. In: Picu R, Krempl E (eds) Proceedings 4th international conference on constitutive laws for engineering materials. Rensselaer Polytechnic Institute, Troy, pp 54–57Google Scholar
  57. Michel JC, Moulinec H, Suquet P (1999) Effective properties of composite materials with periodic microstructure: a computational approach. Comput Methods Appl Mech Eng 172:109–143ADSMathSciNetzbMATHCrossRefGoogle Scholar
  58. Misra A, Hirth J, Hoagland R (2005) Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater 53:4817–4824CrossRefGoogle Scholar
  59. Mordehai D, Clouet E, Fivel M, Verdier M (2008) Introducing dislocation climb by bulk diffusion in discrete dislocation dynamics. Philos Mag 88:899–925ADSCrossRefGoogle Scholar
  60. Morrow BM, Anderson KR, Kozar RW, Mills M (2013) An examination of the use of the modified jogged-screw model for predicting creep behavior in zircaloy-4. Acta Inf 61:4452–4460Google Scholar
  61. Moulinec H, Suquet P (1998) A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput Methods Appl Mech Eng 157:69–94ADSMathSciNetzbMATHCrossRefGoogle Scholar
  62. Mousseau N, Barkema GT (1998) Traveling through potential energy landscapes of disordered materials: the activation-relaxation technique. Phys Rev E 57:2419–2424ADSCrossRefGoogle Scholar
  63. Mura T (1987) Micromechanics of defects in solids. Martinus Nijhoff, BostonzbMATHCrossRefGoogle Scholar
  64. Olmsted DL, Holm EA, Foiles SM (2009) Survey of computed grain boundary properties in face-centered cubic metals090000ii: grain boundary mobility. Acta Mater 57:3704–3713CrossRefGoogle Scholar
  65. Po G, Lazar M, Chandra Admal N, Ghoniem N (2018) A non-singular theory of dislocations in anisotropic crystals. Int J Pasticity 103:1–22CrossRefGoogle Scholar
  66. Prasad Reddy GV, Robertson C, Depres C, Fivel M (2013) Effect of grain disorientation on early fatigue crack propagation in face-centred-cubic polycrystals: a three-dimensional dislocation dynamics investigation. Acta Materialia 61:5300–5310CrossRefGoogle Scholar
  67. Quek SS, Wu ZX, Zhang YW, Srolovitz DJ (2014) Polycrystal deformation in a discrete dislocation dynamics framework. Acta Mater 75:92–105CrossRefGoogle Scholar
  68. Quek SS, Chooi ZH, Wu Z, Zhang YW, Srolovitz DJ (2016) The inverse hall-petch relation in nanocrystalline metals: a discrete dislocation dynamics analysis. J Mech Phys Solids 88(Supplement C):252–266Google Scholar
  69. Sangid MD, Ezaz T, Sehitoglu H, Robertson IM (2011) Energy of slip transmission and nucleation at grain boundaries. Acta Mater 59:283–296CrossRefGoogle Scholar
  70. Saroukhani S, Nguyen LD, Leung KWK, Singh CV, Warner DH (2016) Harnessing atomistic simulations to predict the rate at which dislocations overcome obstacles. J Mech Phys Solids 90:203–214ADSMathSciNetCrossRefGoogle Scholar
  71. Serra A, Bacon D (1995) Computer simulation of screw dislocation interactions with twin boundaries in h.c.p. metals. Acta Met Mater 43:4465–4481CrossRefGoogle Scholar
  72. Serra A, Bacon D, Pond R (1999) Dislocations in interfaces in the h.c.p. metals090000i. Defects formed by absorption of crystal dislocations. Acta Mater 47:1425–1439CrossRefGoogle Scholar
  73. Sills RB, Cai W (2014) Efficient time integration in dislocation dynamics. Model Simul Mater Sci Eng 22:025003ADSCrossRefGoogle Scholar
  74. Sills RB, Aghaei A, Cai W (2016a) Advanced time integration algorithms for dislocation dynamics simulations of work hardening. Model Simul Mater Sci Eng 24:045019ADSCrossRefGoogle Scholar
  75. Sills RB, Kuykendall WP, A AA, Cai W (2016b) Fundamentals of dislocation dynamics simulations. In: Weinberger CR, Tucker GJ (eds) Multiscale materials modeling for nanomechanics. Springer, Cham, p 5317Google Scholar
  76. Siška F, Weygand D, Forest S, Gumbsch P (2009) Comparison of mechanical behaviour of thin film simulated by discrete dislocation dynamics and continuum crystal plasticity. Comput Mater Sci 45:793–799CrossRefGoogle Scholar
  77. Sobie C, McPhie MG, Capolungo L, Cherkaoui M (2014) The effect of interfaces on the mechanical behaviour of multilayered metallic laminates. Model Simul Mater Sci Eng 22: 045007ADSCrossRefGoogle Scholar
  78. Sobie C, Bertin N, Capolungo L (2015) Analysis of obstacle hardening models using dislocation dynamics: application to irradiation-induced defects. Met Mater Trans A 46:3761–3772CrossRefGoogle Scholar
  79. Sobie C, Capolungo L, McDowell DL, Martinez E (2017a) Modal analysis of dislocation vibration and reaction attempt frequency. Acta Mater 134:203–210CrossRefGoogle Scholar
  80. Sobie C, Capolungo L, McDowell DL, Martinez E (2017b) Scale transition using dislocation dynamics and the nudged elastic band method. J Mech Phys Solids 105:161–178ADSCrossRefGoogle Scholar
  81. Sobie C, Capolungo L, McDowell DL, Martinez E (2017c) Thermal activation of dislocations in large scale obstacle bypass. J Mech Phys Solids 105:150–160ADSCrossRefGoogle Scholar
  82. Vattré A (2017) Elastic strain relaxation in interfacial dislocation patterns: a parametric energy-based framework. J Mech Phys Solids 105(Supplement C):254–282Google Scholar
  83. Vattré A, Pan EN (2017) Interaction between semicoherent interfaces and volterra-type dislocations in dissimilar anisotropic materials. J Mater Res 32:3947–3957ADSCrossRefGoogle Scholar
  84. Vattré A, Devincre B, Feyel F, Gatti R, Groh S, Jamond O, Roos A (2014a) Modelling crystal plasticity by 3d dislocation dynamics and the finite element method: the discrete-continuous model revisited. J Mech Phys Solids 63:491–505ADSMathSciNetCrossRefGoogle Scholar
  85. Vattré AJ, Abdolrahim N, Kolluri K, Demkowicz MJ (2014b) Computational design of patterned interfaces using reduced order models. Nat Sci Rep 4:1Google Scholar
  86. Verdier M, Fivel M, Groma I (1998) Mesoscopic scale simulation of dislocation dynamics in fcc metals: principles and applications. Model Simul Mater Sci Eng 6:755–770ADSCrossRefGoogle Scholar
  87. Wang HY, LeSar R (1995) O(N) algorithm for dislocation dynamics. Philos Mag A 71:149–164ADSCrossRefGoogle Scholar
  88. Wang J, Zhou C, Beyerlein IJ, Shao S (2014) Modeling interface-dominated mechanical behavior of nanolayered crystalline composites. JOM 66:102–113ADSCrossRefGoogle Scholar
  89. Wang Z, Ghoniem NM, Swaminarayan S, LeSar R (2006) A parallel algorithm for 3D dislocation dynamics. J Comput Phys 219:608–621ADSMathSciNetzbMATHCrossRefGoogle Scholar
  90. Wang ZQ, Beyerlein IJ, LeSar R (2007) Dislocation motion in high-strain-rate deformation. Philos Mag 87(16):2263–2279ADSCrossRefGoogle Scholar
  91. Weygand D, Friedman LH, der Giessen EV, Needleman A (2002) Aspects of boundary-value problem solutions with three-dimensional dislocation dynamics. Model Simul Mater Sci Eng 10:437ADSCrossRefGoogle Scholar
  92. Yin J, Barnett DM, Cai W (2010) Efficient computation of forces on dislocation segments in anisotropic elasticity. Model Simul Mater Sci Eng 18:045013ADSCrossRefGoogle Scholar
  93. Zbib HM, Diaz de la Rubia T, Rhee M, Hirth JP (2000) 3D dislocation dynamics: stress-strain behavior and hardening mechanisms in fcc and bcc metals. J Nucl Mater 276:154–165ADSCrossRefGoogle Scholar
  94. Zheng Z, Balint DS, Dunne FPE (2016) Discrete dislocation and crystal plasticity analyses of load shedding in polycrystalline titanium alloys. Int J Plast 87:15–31CrossRefGoogle Scholar
  95. Zhou CZ, LeSar R (2012) Dislocation dynamics simulations of plasticity in polycrystalline thin films. Int J Plast 30–31:185–201CrossRefGoogle Scholar
  96. Zhu T, Li J, Samanta A, Leach A, Gall K (2008) Temperature and strain-rate dependence of surface dislocation nucleation. Phys Rev Lett 100:025502ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringIowa State UniversityAmesUSA
  2. 2.Materials Science and Technology DivisionLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations