Modeling of Microstructure Evolution: Mesoscale Challenges

Reference work entry


This introductory chapter presents a perspective on multiscale modeling that emphasizes the role and challenges of mesoscale methods and their impact on understanding and predicting material properties. The predictive power of the combined experimental, theoretical, and computational mesoscale approaches is illustrated by a brief discussion of the phase field method and its application to microstructure evolution. After summarizing the main ideas of each chapter in the section, the state of the art and the future of the field are examined by asking and answering four questions: Is the 3-D representation always necessary?, Do mesoscale computational methods capture nonequilibrium?, To what degree are mesoscale methods quantitative?, and Are mesoscale methods computationally efficient?


  1. BES (2012) From quanta to the continuum: opportunities for meso-scale science, BES report, Department of EnergyGoogle Scholar
  2. Bowden N, Terfort A, Carbeck J et al (1997) Self-assembly of mesoscale objects into ordered two-dimensional arrays. Science 276:233–235CrossRefGoogle Scholar
  3. Cahn JW (1961) On spinodal decomposition. Acta Metall Mater 9:795–801CrossRefGoogle Scholar
  4. Cahn JW, Allen SM (1977) A microscopic theory of domain wall motion and its experimental verification in Fe-Al alloy domain growth kinetics. J Phys Colloq 38:C7–C51CrossRefGoogle Scholar
  5. Chakraborty P, Zhang YF, Tonks MR (2016) Multi-scale modeling of microstructure dependent intergranular brittle fracture using a quantitative phase-field based method. Comput Mater Sci 113:38–52CrossRefGoogle Scholar
  6. Chen LQ (2002) Phase-field models for microstructure evolution. Annu Rev Mater Res 32:113–140CrossRefGoogle Scholar
  7. Chockalingam K, Millett PC, Tonks MR (2012) Effects of intergranular gas bubbles on thermal conductivity. J Nucl Mater 430:166–170ADSCrossRefGoogle Scholar
  8. Geers MGD, Kouznetsova VG, Brekelmans WAM (2010) Multi-scale computational homogenization: trends and challenges. J Comput Appl Math 234:2175–2182CrossRefGoogle Scholar
  9. Hu S, Henager CH Jr. (2009) Phase-field modeling of void lattice formation under irradiation. J Nucl Mater 394:155–159Google Scholar
  10. Hu S et al (2009) Phase-field modeling of gas bubbles and thermal conductivity evolution in nuclear fuels. J Nucl Mater 392:292–300ADSCrossRefGoogle Scholar
  11. Hu S et al (2010) Application of the phase-field method in predicting gas bubble microstructure evolution in nuclear fuels. Int J Mater Res 101:515–522CrossRefGoogle Scholar
  12. Hu SY, Casella A, Lavender CA, Senor DJ, Burkes D (2015) Assessment of effective thermal conductivity in U-Mo metallic fuels with distributed gas bubbles. J Nucl Mater 462:64–76ADSCrossRefGoogle Scholar
  13. Jonušauskas L (2018) Optical 3D printing: bridging the gaps in the mesoscale. J Opt 20:2040–8978CrossRefGoogle Scholar
  14. Karma A, Rappel WJ (1998) Quantitative phase-field modeling of dendritic growth in two and three dimensions. Phys Rev E 57:4323–4349ADSCrossRefGoogle Scholar
  15. Klinsmann M, Rosato D, Kamlah M, McMeeking RM (2015) An assessment of the phase field formulation for crack growth. Comput Methods Appl Mech Eng 294:313–330ADSMathSciNetCrossRefGoogle Scholar
  16. Li D, Li Y, Hu S, Sun X, Khaleel M (2012) Predicting thermal conductivity evolution of polycrystalline materials under irradiation using multiscale approach. Metall Mater Trans A Phys Metall Mater Sci 43A:1060–1069ADSCrossRefGoogle Scholar
  17. Li JH, Zhang JY, Ge W et al (2004) Multi-scale methodology for complex systems. Chem Eng Sci 59:1687–1700CrossRefGoogle Scholar
  18. Li Y, Hu SY, Sun X, Stan M (2017) A review: applications of the phase field method in predicting microstructure and property evolution of irradiated nuclear materials. npj Comput Mater 3:16Google Scholar
  19. Millett PC, Tonks M (2011a) Meso-scale modeling of the influence of intergranular gas bubbles on effective thermal conductivity. J Nucl Mater 412:281–286ADSCrossRefGoogle Scholar
  20. Millett PC, Tonks M (2011b) Phase-field simulations of gas density within bubbles in metals under irradiation. Comput Mater Sci 50:2044–2050CrossRefGoogle Scholar
  21. Millett PC, Wolf D, Desai T, Rokkam S, El-Azab A (2008) Phase-field simulation of thermal conductivity in porous polycrystalline microstructures. J Appl Phys 104:033512ADSCrossRefGoogle Scholar
  22. Moelans N, Blanpain B, Wollants P (2008) An introduction to phase-field modeling of microstructure evolution. Calphad 32:268–294CrossRefGoogle Scholar
  23. Opplestrup T, Bulatov VV, Gilmer GH, Kalos MH, Sadigh B (2006) First-passage Monte Carlo algorithm: diffusion without all the hops. Phys Rev Lett 97:230602ADSCrossRefGoogle Scholar
  24. Praprotnik M, Delle Site L, Kremer K (2008) Multiscale simulation of soft matter: From scale bridging to adaptive resolution. Annu Rev Phys Chem 59:545–571ADSCrossRefGoogle Scholar
  25. Ratsch C et al (2002) Level-set method for island dynamics in epitaxial growth. Phys Rev B 65:195403ADSCrossRefGoogle Scholar
  26. Sarrao JL (2015) Opportunities and advances in mesoscale science. Curr Opinion Solid State Mater Sci 19:201–202ADSCrossRefGoogle Scholar
  27. Sarrao JL, Crabtree GW (2012) Opportunities for mesoscale science. MRS Bull 37:1079–1088CrossRefGoogle Scholar
  28. Sarrao JL, Crabtree GW (2015) Progress in mesoscale science. MRS Bull 40:919–922CrossRefGoogle Scholar
  29. Short MP, Yip S (2015) Materials aging at mesoscale: kinetics of thermal, stress, radiation activations. Curr Opinion Solid State Mater Sci 19:245–252ADSCrossRefGoogle Scholar
  30. Stan M (2009) Discovery and design of nuclear fuels. Mater Today 12:20–28CrossRefGoogle Scholar
  31. Stan M et al (2007) Models and simulations of nuclear fuel materials properties. J Alloys Compd 444:415–423CrossRefGoogle Scholar
  32. Steinbach I (2009) Phase-field models in materials science. Model Simul Mater Sci Eng 17:073001ADSCrossRefGoogle Scholar
  33. Steinbach I (2013) Phase-field model for microstructure evolution at the mesoscopic scale. Annu Rev Mater Res 43:89–107ADSCrossRefGoogle Scholar
  34. Tonks MR, Cheniour A, Aagesen L (2018) How to apply the phase field method to model radiation damage. Comput Mater Sci 147:353CrossRefGoogle Scholar
  35. Welland MJ, Lewis BJ, Thompson WT (2011) Review of high temperature thermochemical properties and application in phase-field modelling of incipient melting in defective fuel. J Nucl Mater 412:342–349ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Intelligent Materials Design, Applied Materials DivisionArgonne National LaboratoryArgonneUSA
  2. 2.Los Alamos National LaboratoryLos AlamosUSA

Section editors and affiliations

  • John Sarrao
    • 1
  • Marius Stan
  1. 1.Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations