Advertisement

Spintronics in Micromagnetics

  • Claas AbertEmail author
Reference work entry
  • 55 Downloads

Abstract

The micromagnetic model has proven to be a reliable tool for the description of a variety of magnetic materials and systems. Classical micromagnetics describes the equilibrium and dynamics of magnetization configuration under the influence of magnetic fields and other material-specific energy contributions such as the exchange interaction. With the rise of spintronics, the interaction of spin-polarized currents with the magnetization has gained a lot of interest. This chapter aims to give an overview over extensions of the micromagnetic model for the description of spintronics effects.

Notes

Acknowledgments

The financial support by the Austrian Federal Ministry for Digital and Economic Affairs and the National Foundation for Research, Technology and Development is gratefully acknowledged.

References

  1. Abert C (2019) Micromagnetics and spintronics: models and numerical methods. print Eur Phys J B 92:120Google Scholar
  2. Abert C, Exl L, Bruckner F, Drews A, Suess D (2013) magnum.fe: a micromagnetic finite-element simulation code based on fenics. J Magn Magn Mater 345:29–35ADSCrossRefGoogle Scholar
  3. Abert C, Bruckner F, Vogler C, Windl R, Thanhoffer R, Suess D (2015) A full-fledged micromagnetic code in fewer than 70 lines of numpy. J Magn Magn Mater 387:13–18ADSCrossRefGoogle Scholar
  4. Abert C, Bruckner F, Vogler C, Suess D (2018) Efficient micromagnetic modelling of spin-transfer torque and spin-orbit torque. AIP Adv 8(5):056008ADSCrossRefGoogle Scholar
  5. Akosa CA, Kim WS, Bisig A, Kläui M, Lee KJ, Manchon A (2015) Role of spin diffusion in current-induced domain wall motion for disordered ferromagnets. Phys Rev B 91(9):094411ADSCrossRefGoogle Scholar
  6. Berkov D, Gorn N (2007) MicroMagus–package for micromagnetic simulations. http://www.micromagus.de
  7. Berkov DV, Miltat J (2008) Spin-torque driven magnetization dynamics: micromagnetic modeling. J Magn Magn Mater 320(7):1238–1259ADSCrossRefGoogle Scholar
  8. Berkov D, Ramstöcck K, Hubert A (1993) Solving micromagnetic problems. towards an optimal numerical method. Phys Status Solidi (a) 137(1):207–225ADSCrossRefGoogle Scholar
  9. Bisotti MA, Beg M, Wang W, Albert M, Chernyshenko D, Cortés-Ortuño D, Pepper RA, Vousden M, Carey R, Fuchs H, Johansen A, Balaban G, Breth L, Kluyver T, Fangohr H (2018) FinMag. https://github.com/fangohr/finmag
  10. Bogdanov A, Rößler U (2001) Chiral symmetry breaking in magnetic thin films and multilayers. Phys Rev Lett 87(3):037203ADSCrossRefGoogle Scholar
  11. Brown WF Jr (1963) Micromagnetics. Interscience Publisher, New YorkzbMATHGoogle Scholar
  12. Butler W, Zhang XG, Schulthess T, MacLaren J (2001) Spin-dependent tunneling conductance of fe| mgo| fe sandwiches. Phys Rev B 63(5):054416ADSCrossRefGoogle Scholar
  13. Caffrey NM, Archer T, Rungger I, Sanvito S (2011) Prediction of large bias-dependent magnetoresistance in all-oxide magnetic tunnel junctions with a ferroelectric barrier. Phys Rev B 83(12):125409ADSCrossRefGoogle Scholar
  14. Chang R, Li S, Lubarda M, Livshitz B, Lomakin V (2011) FastMag: fast micromagnetic simulator for complex magnetic structures. J Appl Phys 109(7):07D358Google Scholar
  15. Cortés-Ortuño D, Wang W, Pepper R, Bisotti MA, Kluyver T, Vousden M, Fangohr H (2016) Fidimag v2.0. https://github.com/computationalmodelling/fidimag
  16. Dyakonov M, Perel V (1971) Current-induced spin orientation of electrons in semiconductors. Phys Lett A 35(6):459–460ADSCrossRefGoogle Scholar
  17. Ellis MO, Stamenova M, Sanvito S (2017) Multiscale modeling of current-induced switching in magnetic tunnel junctions using ab initio spin-transfer torques. Phys Rev B 96(22):224410ADSCrossRefGoogle Scholar
  18. Fabian K, Heider F (1996) How to include magnetostriction in micromagnetic models of titanomagnetite grains. Geophys Res Lett 23(20):2839–2842ADSCrossRefGoogle Scholar
  19. Fischbacher J, Kovacs A, Oezelt H, Schrefl T, Exl L, Fidler J, Suess D, Sakuma N, Yano M, Kato A, et al (2017) Nonlinear conjugate gradient methods in micromagnetics. AIP Adv 7(4): 045310ADSCrossRefGoogle Scholar
  20. Fu S, Cui W, Hu M, Chang R, Donahue MJ, Lomakin V (2016) Finite-difference micromagnetic solvers with the object-oriented micromagnetic framework on graphics processing units. IEEE Trans Magn 52(4):1–9CrossRefGoogle Scholar
  21. García-Cervera CJ, Wang XP (2007) Spin-polarized currents in ferromagnetic multilayers. J Comput Phys 224(2):699–711ADSMathSciNetzbMATHCrossRefGoogle Scholar
  22. Gilbert TL (1955) A Lagrangian formulation of the gyromagnetic equation of the magnetic field. Phys Rev 100:1243Google Scholar
  23. Haney PM, Lee HW, Lee KJ, Manchon A, Stiles MD (2013) Current induced torques and interfacial spin-orbit coupling: semiclassical modeling. Phys Rev B 87(17):174411ADSCrossRefGoogle Scholar
  24. Hertel R (2001) Micromagnetic simulations of magnetostatically coupled nickel nanowires. J Appl Phys 90(11):5752–5758ADSCrossRefGoogle Scholar
  25. Hirsch J (1999) Spin hall effect. Phys Rev Lett 83(9):1834ADSCrossRefGoogle Scholar
  26. Houssameddine D, Ebels U, Delaët B, Rodmacq B, Firastrau I, Ponthenier F, Brunet M, Thirion C, Michel JP, Prejbeanu-Buda L et al (2007) Spin-torque oscillator using a perpendicular polarizer and a planar free layer. Nat Mater 6(6):447ADSCrossRefGoogle Scholar
  27. Hrkac G, Kirschner M, Dorfbauer F, Suess D, Ertl O, Fidler J, Schrefl T (2005) Three-dimensional micromagnetic finite element simulations including eddy currents. J Appl Phys 97(10):10E311Google Scholar
  28. Huai Y (2008) Spin-transfer torque MRAM (STT-MRAM): challenges and prospects. AAPPS Bull 18(6):33–40Google Scholar
  29. Hubert A, Schäfer R (1998) Magnetic domains. Springer, BerlinGoogle Scholar
  30. Jackson JD (1999) Classical electrodynamics, 3rd ed. Am J Phys 67(9):841. https://doi.org/10.1119/1.19136, http://link.aip.org/link/?AJP/67/841/2&Agg=doi
  31. Kakay A, Westphal E, Hertel R (2010) Speedup of fem micromagnetic simulations with graphical processing units. IEEE Trans Magn 46(6):2303–2306ADSCrossRefGoogle Scholar
  32. Kim JV (2012) Spin-torque oscillators. In: Solid state physics, vol 63. Elsevier, Academic Press, pp 217–294Google Scholar
  33. Landau LD, Lifshitz EM (1935) On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Physikalische Zeitschrift der Sowjetunion 8:153–169zbMATHGoogle Scholar
  34. Lee KJ, Dieny B (2006) Micromagnetic investigation of the dynamics of magnetization switching induced by a spin polarized current. Appl Phys Lett 88(13):132506ADSCrossRefGoogle Scholar
  35. Mathon J, Umerski A (2001) Theory of tunneling magnetoresistance of an epitaxial fe/mgo/fe (001) junction. Phys Rev B 63(22):220403ADSCrossRefGoogle Scholar
  36. Miltat JE, Donahue MJ (2007) Numerical micromagnetics: finite difference methods. In: Handbook of magnetism and advanced magnetic materials. Wiley, ChichesterGoogle Scholar
  37. Murakami S, Nagaosa N, Zhang SC (2003) Dissipationless quantum spin current at room temperature. Science 301(5638):1348–1351ADSCrossRefGoogle Scholar
  38. Niimi Y, Kawanishi Y, Wei D, Deranlot C, Yang H, Chshiev M, Valet T, Fert A, Otani Y (2012) Giant spin hall effect induced by skew scattering from bismuth impurities inside thin film cubi alloys. Phys Rev Lett 109(15):156602ADSCrossRefGoogle Scholar
  39. Parkin SS, Hayashi M, Thomas L (2008) Magnetic domain-wall racetrack memory. Science 320(5873):190–194ADSCrossRefGoogle Scholar
  40. Ralph DC, Stiles MD (2008) Spin transfer torques. J Magn Magn Mater 320(7):1190–1216ADSCrossRefGoogle Scholar
  41. Rowlands GE, Krivorotov IN (2012) Magnetization dynamics in a dual free-layer spin-torque nano-oscillator. Phys Rev B 86(9):094425ADSCrossRefGoogle Scholar
  42. Scholz W (2010) MagPar. http://www.magpar.net/
  43. Schrefl T, Fidler J, Kronmüller H (1994) Remanence and coercivity in isotropic nanocrystalline permanent magnets. Phys Rev B 49(9):6100ADSCrossRefGoogle Scholar
  44. Schrefl T, Hrkac G, Bance S, Suess D, Ertl O, Fidler J (2007) Numerical methods in micromagnetics (finite element method). In: Handbook of magnetism and advanced magnetic materials. Wiley, ChichesterCrossRefGoogle Scholar
  45. Selke G, Krüger B, Drews A, Abert C, Gerhardt T (2014) magnum.fd. https://github.com/micromagnetics/magnum.fd
  46. Shu Y, Lin M, Wu K (2004) Micromagnetic modeling of magnetostrictive materials under intrinsic stress. Mech Mater 36(10):975–997CrossRefGoogle Scholar
  47. Sinova J, Culcer D, Niu Q, Sinitsyn N, Jungwirth T, MacDonald A (2004) Universal intrinsic spin hall effect. Phys Rev Lett 92(12):126603ADSCrossRefGoogle Scholar
  48. Slonczewski JC (1996) Current-driven excitation of magnetic multilayers. J Magn Magn Mater 159(1–2):L1–L7ADSCrossRefGoogle Scholar
  49. Slonczewski JC (2002) Currents and torques in metallic magnetic multilayers. J Magn Magn Mater 247(3):324–338ADSCrossRefGoogle Scholar
  50. Sturma M, Toussaint JC, Gusakova D (2015) Geometry effects on magnetization dynamics in circular cross-section wires. J Appl Phys 117(24):243901ADSCrossRefGoogle Scholar
  51. Torres L, Lopez-Diaz L, Martinez E, Alejos O (2003) Micromagnetic dynamic computations including eddy currents. IEEE Trans Magn 39(5):2498–2500ADSCrossRefGoogle Scholar
  52. Valet T, Fert A (1993) Theory of the perpendicular magnetoresistance in magnetic multilayers. Phys Rev B 48(10):7099ADSCrossRefGoogle Scholar
  53. Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F, Van Waeyenberge B (2014) The design and verification of mumax3. AIP Adv 4(10):107133ADSCrossRefGoogle Scholar
  54. Waintal X, Myers EB, Brouwer PW, Ralph D (2000) Role of spin-dependent interface scattering in generating current-induced torques in magnetic multilayers. Phys Rev B 62(18):12317ADSCrossRefGoogle Scholar
  55. Wegrowe JE, Ciornei MC (2012) Magnetization dynamics, gyromagnetic relation, and inertial effects. Am J Phys 80(7):607–611. https://doi.org/10.1119/1.4709188, http://link.aip.org/link/?AJP/80/607/1
  56. Worledge D, Hu G, Abraham DW, Sun J, Trouilloud P, Nowak J, Brown S, Gaidis M, O’Sullivan E, Robertazzi R (2011) Spin torque switching of perpendicular Ta|CoFeB|MgO-based magnetic tunnel junctions. Appl Phys Lett 98(2):022501ADSCrossRefGoogle Scholar
  57. Xiao J, Zangwill A, Stiles MD (2005) Macrospin models of spin transfer dynamics. Phys Rev B 72(1):014446ADSCrossRefGoogle Scholar
  58. Zhang S, Li Z (2004) Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets. Phys Rev Lett 93(12):127204ADSCrossRefGoogle Scholar
  59. Zhang S, Levy P, Fert A (2002) Mechanisms of spin-polarized current-driven magnetization switching. Phys Rev Lett 88(23):236601ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Christian Doppler Laboratory for Advanced Magnetic Sensing and Materials, Faculty of PhysicsUniversity of ViennaViennaAustria

Personalised recommendations