Non-equilibrium Green’s Function Methods for Spin Transport and Dynamics

Reference work entry


The modeling of spintronic devices is a theoretical challenge, since one has to describe accurately both the electronic structure of the constituent materials and their charge- and spin-transport properties. In this chapter we present the state-of-the-art quantum transport theory appropriate for this task. The theory is based on the so-called non-equilibrium Green’s function formalism, which is combined with density functional theory in order to provide a first principles description of materials properties. This allows for the evaluation of the steady-state charge and spin current through a quantum system at a finite applied bias voltage between the electrodes. It also describes the spin-transfer torque that flowing spins exert on localized magnetic moments, which is able to switch the magnetization of a magnetic system. In this chapter the detailed discussion about the principal methodological aspects is accompanied by the review of a number of technologically relevant applications.



I. R. acknowledges financial support from the European Unions Horizon2020 research and innovation program within the PETMEM project (Grant Agreement No. 688282). A. D. was supported from the EU via the Marie Sklodowska-Curie Individual Fellowship SPINMAN (No. SEP-210189940). M. S. gratefully acknowledges funding from Science Foundation Ireland (Grant No. 16/US-C2C/3287). We thank ICHEC and the TCHPC for the provision of computational facilities.


  1. Alekhin A, Razdolski I, Ilin N, Meyburg JP, Diesing D, Roddatis V, Rungger I, Stamenova M, Sanvito S, Bovensiepen U, Melnikov A (2017) Femtosecond spin current pulses generated by the nonthermal spin-dependent Seebeck effect and interacting with ferromagnets in spin valves. Phys Rev Lett 119:017202–017207ADSCrossRefGoogle Scholar
  2. Anisimov VI, Gunnarsson O (1991) Density-functional calculation of effective coulomb interactions in metals. Phys Rev B 43:7570ADSCrossRefGoogle Scholar
  3. Baibich MN, Broto JM, Fert A, Van Dau FN, Petroff F, Etienne P, Creuzet G, Friederich A, Chazelas J (1988) Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys Rev Lett 61:2472–2475ADSCrossRefGoogle Scholar
  4. Binasch G, Grünberg P, Saurenbach F, Zinn W (1989) Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys Rev B 39:4828–4830ADSCrossRefGoogle Scholar
  5. Brataas A, Kent AD, Ohno H (2012) Current-induced torques in magnetic materials. Nat Mater 11(5):372–381ADSCrossRefGoogle Scholar
  6. Butler WH, Zhang XG, Schulthess TC, MacLaren JM (2001) Spin-dependent tunneling conductance of Fe|MgO|Fe sandwiches. Phys Rev B 63:054416–054427ADSCrossRefGoogle Scholar
  7. Büttiker M, Imry Y, Landauer R, Pinhas S (1985) Generalized many-channel conductance formula with application to small rings. Phys Rev B 31:6207–6215ADSCrossRefGoogle Scholar
  8. Chioncel L, Morari C, Östlin A, Appelt WH, Droghetti A, Radonjić MM, Rungger I, Vitos L, Eckern U, Postnikov AV (2015) Transmission through correlated CunCoCun heterostructures. Phys Rev B 92:054431–054443ADSCrossRefGoogle Scholar
  9. Datta S (1995) Electronic transport in mesoscopic systems. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  10. Datta S (2005) Quantum transport: atom to transistor. Cambridge University Press, CambridgezbMATHCrossRefGoogle Scholar
  11. De Teresa JM, Barthélémy A, Fert A, Contour JP, Lyonnet R, Montaigne F, Seneor P, Vaurès A (1999) Inverse tunnel magnetoresistance in Co∕SrTiO3∕La0.7Sr0.3MnO3: new ideas on spin-polarized tunneling. Phys Rev Lett 82:4288–4291ADSCrossRefGoogle Scholar
  12. Dolui K, Narayan A, Rungger I, Sanvito S (2014) Efficient spin injection and giant magnetoresistance in Fe/MoS2/Fe junctions. Phys Rev B 90:041401–041405(R)Google Scholar
  13. Droghetti A, Rungger I (2017) Quantum transport simulation scheme including strong correlations and its application to organic radicals adsorbed on gold. Phys Rev B 95:085131ADSCrossRefGoogle Scholar
  14. Ellis MOA, Stamenova M, Sanvito S (2017) Multiscale modeling of current-induced switching in magnetic tunnel junctions using ab initio spin-transfer torques. Phys Rev B 96(22):224410ADSCrossRefGoogle Scholar
  15. Ghosh A (2017) Nanoelectronics: a molecular view. World Scientific Publishing Company, SingaporeGoogle Scholar
  16. Haney PM, Waldron D, Duine RA, Núñez AS, Guo H, MacDonald AH (2007) Current-induced order parameter dynamics: microscopic theory applied to Co/Cu/Co spin valves. Phys Rev B 76(2):024404ADSCrossRefGoogle Scholar
  17. Himmetoglu B, Floris A, de Gironcoli S, Cococcioni M (2014) Hubbard-corrected dft energy functionals: the LDA+U description of correlated systems. Int J Quant Chem 114(1):14–49CrossRefGoogle Scholar
  18. Jacob D (2015) Towards a full ab initio theory of strong electronic correlations in nanoscale devices. J Phys Condens Matter 27(24):245606ADSCrossRefGoogle Scholar
  19. Jutong N, Rungger I, Schuster C, Eckern U, Sanvito S, Schwingenschloegl U (2012) Electronic transport through EuO spin-filter tunnel junctions. Phys Rev B 86:205310–205319ADSCrossRefGoogle Scholar
  20. Kotliar G, Savrasov SY, Haule K, Oudovenko VS, Parcollet O, Marianetti CA (2006) Electronic structure calculations with dynamical mean-field theory. Rev Mod Phys 78:865–951ADSCrossRefGoogle Scholar
  21. Landauer R (1957) Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J Res Dev 1:223–231MathSciNetCrossRefGoogle Scholar
  22. López Sancho MP, López Sancho JM, Rubio J (1984) Highly convergent schemes for the calculation of bulk and surface Green functions. J Phys F Met Phys 14:1205ADSCrossRefGoogle Scholar
  23. Mahfouzi F, Nikolic BK (2013) How to construct the proper gauge-invariant density matrix in steady-state nonequilibrium: applications to spin-transfer and spin-orbit torques. SPIN 3(2):133002CrossRefGoogle Scholar
  24. McEniry EJ, Bowler DR, Dundas D, Horsfield AP, Sánchez CG, Todorov TN (2007) Dynamical simulation of inelastic quantum transport. J Phys Condens Matter 19(19):196201ADSCrossRefGoogle Scholar
  25. Miyake T, Aryasetiawan F, Imada M (2009) Ab initio procedure for constructing effective models of correlated materials with entangled band structure. Phys Rev B 80:155134ADSCrossRefGoogle Scholar
  26. Ness H, Dash LK, Godby RW (2010) Generalization and applicability of the Landauer formula for nonequilibrium current in the presence of interactions. Phys Rev B 82:085426ADSCrossRefGoogle Scholar
  27. Parkin SSP, Kaiser C, Panchula A, Rice PM, Hughes B, Samant M, Yang SH (2004) Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat Mater 3:862–867ADSCrossRefGoogle Scholar
  28. Pemmaraju CD, Archer T, Sánchez-Portal D, Sanvito S (2007) Atomic-orbital-based approximate self-interaction correction scheme for molecules and solids. Phys Rev B 75:045101ADSCrossRefGoogle Scholar
  29. Perdew JP, Levy M (1997) Comment on “significance of the highest occupied Kohn-Sham eigenvalue”. Phys Rev B 56:16021–16028ADSCrossRefGoogle Scholar
  30. Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23:5048ADSCrossRefGoogle Scholar
  31. Pertsova A, Canali CM, Pederson MR, Rungger I, Sanvito S (2015) Electronic transport as a driver for self-interaction-corrected methods. Adv Atomic Mol Opt Phys 64:29–86ADSCrossRefGoogle Scholar
  32. Rocha A, Garcìa-Suarez V, Bailey S, Lambert C, Ferrer J, Sanvito S (2005) Towards molecular spintronics. Nat Mater 4:335ADSCrossRefGoogle Scholar
  33. Rocha A, Garcia-Suarez V, Bailey S, Lambert C, Ferrer J, Sanvito S (2006) Spin and molecular electronics in atomically generated orbital landscapes. Phys Rev B 73:085414–085433ADSCrossRefGoogle Scholar
  34. Rungger I, Sanvito S (2008) Algorithm for the construction of self-energies for electronic transport calculations based on singularity elimination and singular value decomposition. Phys Rev B 78:035407–035419ADSCrossRefGoogle Scholar
  35. Rungger I, Mryasov O, Sanvito S (2009) Resonant electronic states and I-V curves of Fe/MgO/Fe(100) tunnel junctions. Phys Rev B 79:094414–094418ADSCrossRefGoogle Scholar
  36. Sánchez CG, Stamenova M, Sanvito S, Bowler DR, Horsfield AP, Todorov TN (2006) Molecular conduction: do time-dependent simulations tell you more than the Landauer approach? J Chem Phys 124(21):214708ADSCrossRefGoogle Scholar
  37. Slonczewski JC (2005) Currents, torques, and polarization factors in magnetic tunnel junctions. Phys Rev B 71(2):024411–024420ADSCrossRefGoogle Scholar
  38. Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter 14(11):2745–2779ADSCrossRefGoogle Scholar
  39. Souza AdM, Rungger I, Pontes RB, Rocha AR, da Silva AJR, Schwingenschloegl U, Sanvito S (2014) Stretching of BDT-gold molecular junctions: thiol or thiolate termination? Nanoscale 6:14495ADSCrossRefGoogle Scholar
  40. Stamenova M, Sanvito S (2010) Atomistic spin-dynamics. In: Narlikar AV, Fu YY (eds) Oxford handbook of nanoscience and technology, vol 1. Oxford University Press, New YorkGoogle Scholar
  41. Stamenova M, Sanvito S, Todorov TN (2005) Current-driven magnetic rearrangements in spin-polarized point contacts. Phys Rev B 72(13):134407ADSCrossRefGoogle Scholar
  42. Stamenova M, Todorov TN, Sanvito S (2008) Newtonian origin of the spin motive force in ferromagnetic atomic wires. Phys Rev B 77(5):054439ADSCrossRefGoogle Scholar
  43. Stamenova M, Mohebbi R, Seyed-Yazdi J, Rungger I, Sanvito S (2017) First-principles spin-transfer torque in CuMnAs|GaP|CuMnAs junctions. Phys Rev B 95(6):060403ADSCrossRefGoogle Scholar
  44. Stefanucci G, van Leeuwen R (2013) Nonequilibrium many-body theory of quantum systems: a modern introduction. Cambridge University Press, CambridgezbMATHCrossRefGoogle Scholar
  45. Strange M, Rostgaard C, Häkkinen H, Thygesen KS (2011) Self-consistent GW calculations of electronic transport in thiol- and amine-linked molecular junctions. Phys Rev B 84:115108–115120ADSCrossRefGoogle Scholar
  46. Theodonis I, Kioussis N, Kalitsov A, Chshiev M, Butler WH (2006) Anomalous bias dependence of spin torque in magnetic tunnel junctions. Phys Rev Lett 97(23):237205ADSCrossRefGoogle Scholar
  47. Di Ventra M, Chen YC, Todorov TN (2004) Are current-induced forces conservative? Phys Rev Lett 92(17):176803ADSCrossRefGoogle Scholar
  48. von Barth U, Hedin L (1972) A local exchange-correlation potential for the spin polarized case: I. J Phys C Solid State Phys 5(13):1629–1642ADSCrossRefGoogle Scholar
  49. Wadley P, Novák V, Campion R, Rinaldi C, Martí X, Reichlová H, Železný J, Gazquez J, Roldan M, Varela M, Khalyavin D, Langridge S, Kriegner D, Máca F, Mašek J, Bertacco R, Holý V, Rushforth A, Edmonds K, Gallagher B, Foxon C, Wunderlich J, Jungwirth T (2013) Tetragonal phase of epitaxial room-temperature antiferromagnet CuMnAs. Nat Commun 4:2322ADSCrossRefGoogle Scholar
  50. Wadley P, Howells B, Elezny J, Andrews C, Hills V, Campion RP, Novak V, Olejnik K, Maccherozzi F, Dhesi SS, Martin SY, Wagner T, Wunderlich J, Freimuth F, Mokrousov Y, Kune J, Chauhan JS, Grzybowski MJ, Rushforth AW, Edmonds KW, Gallagher BL, Jungwirth T (2016) Electrical switching of an antiferromagnet. Science 351(6273):587–590ADSCrossRefGoogle Scholar
  51. Xie Y, Rungger I, Stamenova M, Sanvito S, Munira K, Ghosh AW (2016) Spin transfer torque: a multiscale picture. In: Atulasimha J, Bandyopadhyay S (eds) Nanomagnetic and spintronic devices for energy-efficient memory and computing. Wiley, Chichester, p 91CrossRefGoogle Scholar
  52. Yuasa S, Nagahama T, Fukushima A, Suzuki Y, Ando K (2004) Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat Mater 3: 868–871ADSCrossRefGoogle Scholar
  53. Zhang S, Li Z (2004) Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets. Phys Rev Lett 93(12):127204ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.National Physical LaboratoryTeddingtonUK
  2. 2.Nano-Bio Spectroscopy Group and European Theoretical Spectroscopy Facility (ETSF)Materials Physics Center, University of the Basque CountrySan SebastianSpain
  3. 3.School of PhysicsAMBER and CRANN Institute, Trinity CollegeDublinIreland

Personalised recommendations