Density Functional Theory for Magnetism and Magnetic Anisotropy

Reference work entry


Density functional theory and its application for the simulation of magnetic properties of condensed matter is introduced. This includes vector-spin density functional theory for the evaluation of spin-spin interactions and relativistic extensions to capture effects like the magnetocrystalline anisotropy. The role of the different approximations to the exchange-correlation functional, e.g., the local density approximation, or the generalized gradient approximation, is investigated, showing successes and limitations of the present functionals. Special techniques to determine, e.g., the magnetic ground state or finite temperature properties based on density functional theory are shortly discussed.


  1. Anisimov VI, Aryasetiawan F, Lichtenstein AI (1997) First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LSDA+U method. J Phys Condens Matter 9:767–808ADSCrossRefGoogle Scholar
  2. Antropov V (2005) Magnetic short-range order above the Curie temperature of Fe and Ni. Phys Rev B 72:140406ADSCrossRefGoogle Scholar
  3. Antropov VP, Katsnelson MI, van Schilfgaarde M, Harmon BN (1995) Ab initio spin dynamics in magnets. Phys Rev Lett 75:729–732ADSCrossRefGoogle Scholar
  4. Antropov VP, Katsnelson MI, Harmon BN, van Schilfgaarde M, Kusnezov D (1996) Spin dynamics in magnets: equation of motion and finite temperature effects. Phys Rev B 54: 1019–1035ADSCrossRefGoogle Scholar
  5. Bander M, Mills DL (1988) Ferromagnetism of ultrathin films. Phys Rev B 38:12015–12018ADSCrossRefGoogle Scholar
  6. Beiden SV, Temmerman WM, Szotek Z, Gehring GA, Stocks GM, Wang Y, Nicholson DMC, Shelton WA, Ebert H (1998) Real-space approach to the calculation of magnetocrystalline anisotropy in metals. Phys Rev B 57:14247–14253ADSCrossRefGoogle Scholar
  7. Bethe HA, Salpeter EE (1977) Quantum mechanics of one- and two-electron systems. Plenum, New YorkzbMATHCrossRefGoogle Scholar
  8. Bode M, Heide M, von Bergmann K, Ferriani P, Heinze S, Bihlmayer G, Kubetzka A, Pietzsch O, Blügel S, Wiesendanger R (2007) Chiral magnetic order at surfaces driven by inversion asymmetry. Nature 447:190ADSCrossRefGoogle Scholar
  9. Bruno P (1989) Tight-binding approach to the orbital magnetic moment and magnetocrystalline anisotropy of transition-metal monolayers. Phys Rev B 39:865–868ADSCrossRefGoogle Scholar
  10. Bychkov YA, Rashba EI (1984) Properties of a 2D electron gas with lifted spectral degeneracy. JETP Lett 39:78–81ADSGoogle Scholar
  11. Dederichs PH, Blügel S, Zeller R, Akai H (1984) Ground states of constrained systems: application to cerium impurities. Phys Rev Lett 53:2512–2515ADSCrossRefGoogle Scholar
  12. Di Napoli S, Llois AM, Bihlmayer G, Blügel S, Alouani M, Dreyssé H (2004) Magnetic structure and transport properties of noncollinear LaMn2X 2 (X = Ge, Si) systems. Phys Rev B 70:174418ADSCrossRefGoogle Scholar
  13. Dirac PAM (1930) Note on exchange phenomena in the Thomas–Fermi atom. Proc Camb Philos Soc 26:376–385ADSzbMATHCrossRefGoogle Scholar
  14. Dupé B, Bihlmayer G, Böttcher M, Blügel S, Heinze S (2016) Engineering skyrmions in transition-metal multilayers for spintronics. Nat Commun 7:11779ADSCrossRefGoogle Scholar
  15. Dzialoshinskii IE (1957) Thermodynamic theory of “weak” ferromagnetism in antiferromagnetic substances. Sov Phys JETP 5:1259zbMATHGoogle Scholar
  16. Eich FG, Gross EKU (2013) Transverse spin-gradient functional for noncollinear spin-density-functional theory. Phys Rev Lett 111:156401/1–5ADSCrossRefGoogle Scholar
  17. Ferriani P, Turek I, Heinze S, Bihlmayer G, Blügel S (2007) Magnetic phase control in monolayer films by substrate tuning. Phys Rev Lett 99:187203ADSCrossRefGoogle Scholar
  18. Friesner RA (2005) Ab initio quantum chemistry: methodology and applications. PNAS 102: 6648–6653ADSzbMATHCrossRefGoogle Scholar
  19. Galler A, Taranto C, Wallerberger M, Kaltak M, Kresse G, Sangiovanni G, Toschi A, Held K (2015) Screened moments and absence of ferromagnetism in FeAl. Phys Rev B 92: 205132ADSCrossRefGoogle Scholar
  20. Halilov SV, Perlov AY, Oppeneer PM, Eschrig H (1997) Magnon spectrum and related finite-temperature magnetic properties: a first-principle approach. Europhys Lett 39:91ADSCrossRefGoogle Scholar
  21. Halilov SV, Perlov AY, Oppeneer PM, Yaresko AN, Antonov VN (1998) Magnetocrystalline anisotropy energy in cubic Fe, Co, and Ni: applicability of local-spin-density theory reexamined. Phys Rev B 57:9557–9560ADSCrossRefGoogle Scholar
  22. Heide M, Bihlmayer G, Blügel S (2009) Describing Dzyaloshinskii-Moriya spirals from first principles. Physica B 404:2678ADSCrossRefGoogle Scholar
  23. Held K, Anisimov VI, Nekrasov IA, Eyert V, Keller G, Pruschke T, Vollhardt D, Blümer N, McMahan AK, Scalettar RT (2002) The LDA+DMFT approach to materials with strong electronic correlations. In: Grotendorst J, Marx D, Muramatsu A (eds) Quantum simulations of complex many-body systems: from theory to algorithms, Research Center Jülich. NIC series, vol 10. John von Neumann Institute for Computing, Jülich, pp 175–209Google Scholar
  24. Herring C (1966) Exchange interactions among intinerant electrons. In: Rado GT, Suhl H (eds) Magnetism, vol IV. Academic, New York/LondonGoogle Scholar
  25. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871ADSMathSciNetCrossRefGoogle Scholar
  26. Ibañez Azpiroz J, dos Santos Dias M, Blügel S, Lounis S (2016) Zero-point spin-fluctuations of single adatoms. Nano Lett 16:4305–4311ADSCrossRefGoogle Scholar
  27. Jones RO (2015) Density functional theory: its origins, rise to prominence, and future. Rev Mod Phys 87:897–923ADSMathSciNetCrossRefGoogle Scholar
  28. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138ADSMathSciNetCrossRefGoogle Scholar
  29. Kokalj A (2003) Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. Comput Mater Sci 28:155–168CrossRefGoogle Scholar
  30. Koller D, Tran F, Blaha P (2011) Merits and limits of the modified Becke-Johnson exchange potential. Phys Rev B 83:195134/1–10ADSCrossRefGoogle Scholar
  31. Kota Y, Sakuma A (2014) Mechanism of uniaxial magnetocrystalline anisotropy in transition metal alloys. J Phys Soc Jpn 83(3):034715ADSCrossRefGoogle Scholar
  32. Kübler J (2000) Theory of itinerant electron magnetism. International series of monographs in physics, vol 106. Clarendon Press, OxfordGoogle Scholar
  33. Kurz P, Bihlmayer G, Blügel (2002) Magnetism and electronic structure of hcp Gd and the Gd(0001) surface. J Phys Condens Matter 14:6353–6371Google Scholar
  34. Kurz P, Förster F, Nordström L, Bihlmayer G, Blügel S (2004) Ab initio treatment of non-collinear magnets with the full-potential linearized augmented planewave method. Phys Rev B 69:024415/1–15ADSCrossRefGoogle Scholar
  35. Ležaić M, Mavropoulos P, Bihlmayer G, Blügel S (2013) Exchange interactions and local-moment fluctuation corrections in ferromagnets at finite temperatures based on noncollinear density-functional calculations. Phys Rev B 88:134403ADSCrossRefGoogle Scholar
  36. Liechtenstein AI, Katsnelson MI, Antropov VP, Gubanov VA (1986) Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys. J Magn Magn Mater 67:65–74ADSCrossRefGoogle Scholar
  37. Millhouse AH, McEwen KA (1973) Neutron diffraction study of single crystal europium in an applied magnetic field. Solid State Commun 13:339–345ADSCrossRefGoogle Scholar
  38. Młyńczak E, Eschbach M, Borek S, Minár J, Braun J, Aguilera I, Bihlmayer G, Döring S, Gehlmann M, Gospodarič P, Suga S, Plucinski L, Blügel S, Ebert H, Schneider CM (2016) Fermi surface manipulation by external magnetic field demonstrated for a prototypical ferromagnet. Phys Rev X 6:041048Google Scholar
  39. Moriya T (1960) Anisotropic superexchange interaction and weak ferromagnetism. Phys Rev 120:91–98ADSCrossRefGoogle Scholar
  40. Moruzzi VL, Janak JF, Williams AR (1978) Calculated electronic properties of metals. Pergamon, New YorkGoogle Scholar
  41. Moruzzi VL, Marcus PM, Schwarz K, Mohn P (1986) Ferromagnetic phases of bcc and fcc Fe, Co, and Ni. Phys Rev B 34:1784–1791ADSCrossRefGoogle Scholar
  42. Pajda M, Kudrnovský J, Turek I, Drchal V, Bruno P (2001) Ab initio calculations of exchange interactions, spin-wave stiffness constants, and Curie temperatures of Fe, Co, and Ni. Phys Rev B 64:174402ADSCrossRefGoogle Scholar
  43. Pickard CJ, Mauri F (2001) All-electron magnetic response with pseudopotentials: NMR chemical shifts. Phys Rev B 63:245101/1–13ADSCrossRefGoogle Scholar
  44. Ravindran P, Kjekshus A, Fjellvåg H, James P, Nordström L, Johansson B, Eriksson O (2001) Large magnetocrystalline anisotropy in bilayer transition metal phases from first-principles full-potential calculations. Phys Rev B 63:144409ADSCrossRefGoogle Scholar
  45. Rosengaard NM, Johansson B (1997) Finite-temperature study of itinerant ferromagnetism in Fe, Co, and Ni. Phys Rev B 55:14975–14986ADSCrossRefGoogle Scholar
  46. Sandratskii LM (1991) Symmetry analysis of electronic states for crystals with spiral magnetic order. I. General properties. J Phys Condens Matter 3:8565Google Scholar
  47. Schweflinghaus B, Zimmermann B, Heide M, Bihlmayer G, Blügel S (2016) Role of Dzyaloshinskii-Moriya interaction for magnetism in transition-metal chains at Pt step edges. Phys Rev B 94:024403ADSCrossRefGoogle Scholar
  48. Shallcross S, Kissavos AE, Meded V, Ruban AV (2005) An ab initio effective Hamiltonian for magnetism including longitudinal spin fluctuations. Phys Rev B 72:104437/1–8ADSCrossRefGoogle Scholar
  49. Shick AB, Mryasov ON (2003) Coulomb correlations and magnetic anisotropy in ordered L10 CoPt and FePt alloys. Phys Rev B 67:172407ADSCrossRefGoogle Scholar
  50. Singh DJ, Ashkenazi J (1992) Magnetism with generalized-gradient-approximation density functionals. Phys Rev B 46:11570–11577ADSCrossRefGoogle Scholar
  51. Skubic B, Hellsvik J, Nordström L, Eriksson O (2008) A method for atomistic spin dynamics simulations: implementation and examples. J Phys Condens Matter 20(31):315203CrossRefGoogle Scholar
  52. Slater JC (1951) A simplification of the Hartree-Fock method. Phys Rev 81:385–390ADSzbMATHCrossRefGoogle Scholar
  53. Staunton JB (1994) Electronic structure of magnetic transition metallic materials. Rep Prog Phys 57:1289–1344ADSCrossRefGoogle Scholar
  54. Thoene J, Chadov S, Fecher G, Felser C, Kübler J (2009) Exchange energies, Curie temperatures and magnons in Heusler compounds. J Phys D Appl Phys 43:084013ADSCrossRefGoogle Scholar
  55. Thonhauser T, Ceresoli D, Vanderbilt D, Resta R (2005) Orbital magnetization in periodic insulators. Phys Rev Lett 95:137205/1–4ADSCrossRefGoogle Scholar
  56. Trygg J, Johansson B, Eriksson O, Wills JM (1995) Total energy calculation of the magnetocrystalline anisotropy energy in the ferromagnetic 3d metals. Phys Rev Lett 75:2871–2874ADSCrossRefGoogle Scholar
  57. Turek I, Kudrnovský J, Bihlmayer G, Blügel S (2003a) Ab initio theory of exchange interactions and the Curie temperature of bulk Gd. J Phys Condens Matter 15(17):2771ADSCrossRefGoogle Scholar
  58. Turek I, Kudrnovský J, Diviš M, Franek P, Bihlmayer G, Blügel S (2003b) First-principles study of the electronic structure and exchange interactions in bcc europium. Phys Rev B 68:224431ADSCrossRefGoogle Scholar
  59. Udvardi L, Szunyogh L (2009) Chiral asymmetry of the spin-wave spectra in ultrathin magnetic films. Phys Rev Lett 102:207204ADSCrossRefGoogle Scholar
  60. van der Laan G (1998) Microscopic origin of magnetocrystalline anisotropy in transition metal thin films. J Phys Condens Matter 10(14):3239ADSCrossRefGoogle Scholar
  61. von Barth U, Hedin L (1972) A local exchange-correlation potential for the spin polarized case: I. J Phys C Solid State Phys 5:1629–1642ADSCrossRefGoogle Scholar
  62. Weinert M, Watson RE, Davenport JW (1985) Total-energy differences and eigenvalue sums. Phys Rev B 32:2115–2119ADSCrossRefGoogle Scholar
  63. White HW, Beaudry BJ, Burgardt P, Legvold S, Harmon BN (1975) Magnetic moments of ferromagnetic gadolinium alloys. AIP Conf Proc 29:329ADSCrossRefGoogle Scholar
  64. Yang I, Savrasov SY, Kotliar G (2001) Importance of correlation effects on magnetic anisotropy in Fe and Ni. Phys Rev Lett 87:216405/1–4ADSGoogle Scholar
  65. Yosida K (1996) Theory of magnetism. Springer, Berlin/HeidelbergzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Peter Grünberg Institut and Institute for Advanced SimulationForschungszentrum Jülich and JARAJülichGermany

Personalised recommendations