Time-Dependent Density Functional Theory for Spin Dynamics

Reference work entry


With the development of ultrashort sub-picosecond laser pulses, the last two decades have witnessed the emergence of a new field of magnetism, namely, femtomagnetism. This consists of controlling the magnetic interactions by using purely optical stimuli at sub-picosecond timescales, where both the exchange interaction and the magnetic anisotropy cannot be considered constant. The modeling of such phenomena is at present populated by semiempirical theories, which heavily rely on assumptions about the dominant interactions responsible for the dynamics and the system intrinsic properties (e.g., the conductivity). However, in the last few years, there have been a few attempts to look at the problem from a purely ab initio point of view, namely, by using time-dependent density functional theory. Here we will review the progress in this field and show how a theory not biased by assumptions can shed light into the fundamental aspects of the laser-induced magnetization dynamics. In particular we will discuss the ultrafast demagnetization of transition metals both in their cluster and bulk form and the possibility of spin transfer between sublattices in compounds containing magnetic ions. The chapter is also complemented by a short review of time-dependent spin density functional theory in the context of spin dynamics.



This work (MS, JS, and SS) was supported by Science Foundation Ireland (Grants No. 14/IA/2624 and No. 16/US-C2C/3287). We gratefully acknowledge the Irish Centre for High-End Computing (ICHEC) for the provision of computational facilities. We also acknowledge the Trinity Centre for High Performance Computing (TCHPC) for use of computational resources. SS would like to thank DFG for funding through TRR227.


  1. Battiato M, Carva K, Oppeneer PM (2010) Superdiffusive spin transport as a mechanism of ultrafast demagnetization. Phys Rev Lett 105:027203ADSCrossRefGoogle Scholar
  2. Beaurepaire E, Merle J, Daunois A, Bigot J (1996) Ultrafast spin dynamics in ferromagnetic nickel. Phys Rev Lett 76(22):4250–4253ADSCrossRefGoogle Scholar
  3. Boeglin C, Beaurepaire E, Halte V, Lopez-Flores V, Stamm C, Pontius N, Durr HA, Bigot JY (2010) Distinguishing the ultrafast dynamics of spin and orbital moments in solids. Nature 465:458–461ADSCrossRefGoogle Scholar
  4. Capelle K, Vignale G, Gyorffy B (2001) Spin currents and spin dynamics in time-dependent density-functional theory. Phys Rev Lett 87(20):206403ADSCrossRefGoogle Scholar
  5. Carpene E, Mancini E, Dallera C, Brenna M, Puppin E, De Silvestri S (2008) Dynamics of electron-magnon interaction and ultrafast demagnetization in thin iron films. Phys Rev B 78(17):174422ADSCrossRefGoogle Scholar
  6. Castro A, Appel H, Oliveira M, Rozzi CA, Andrade X, Lorenzen F, Marques MAL, Gross EKU, Rubio A (2006) Octopus: a tool for the application of time-dependent density functional theory. Phys Stat Sol B 243:2465ADSCrossRefGoogle Scholar
  7. Cinchetti M, Albaneda MS, Hoffmann D, Roth T, Wuestenberg JP, Krauss M, Andreyev O, Schneider HC, Bauer M, Aeschlimann M (2006) Spin-flip processes and ultrafast magnetization dynamics in co: unifying the microscopic and macroscopic view of femtosecond magnetism. Phys Rev Lett 97(17):177201ADSCrossRefGoogle Scholar
  8. Elliott P, Mueller T, Dewhurst JK, Sharma S, Gross EKU (2016a) Ultrafast laser induced local magnetization dynamics in heusler compounds. Sci Rep 6:38911ADSCrossRefGoogle Scholar
  9. Elliott P, Krieger K, Dewhurst JK, Sharma S, Gross EKU (2016b) Optimal control of laser-induced spin–orbit mediated ultrafast demagnetization. New J Phys 18:013014. CrossRefGoogle Scholar
  10. Eschenlohr A, Sultan M, Melnikov A, Bergeard N, Wieczorek J, Kachel T, Stamm C, Bovensiepen U (2014) Role of spin-lattice coupling in the ultrafast demagnetization of Gd1−xTbx alloys. Phys Rev B 89(21):214423ADSCrossRefGoogle Scholar
  11. Gutsev GL, Beuschlicher CW (2003) Electron affinites, ionisation energies, and fragmentation energies of fen clusters (n = 2−6): a density functional theory study. J Phys Chem 107: 7013–7023CrossRefGoogle Scholar
  12. Hinschberger Y, Hervieux PA (2012) Foldy wouthuysen transformation applied to the interaction of an electron with ultrafast electromagnetic fields. Phys Lett A 376:813ADSCrossRefGoogle Scholar
  13. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864ADSMathSciNetCrossRefGoogle Scholar
  14. Hohlfeld J, Matthias E, Knorren R, Bennemann K (1997) Nonequilibrium magnetization dynamics of nickel. Phys Rev Lett 78(25):4861–4864ADSCrossRefGoogle Scholar
  15. Jean-Yves Bigot MV, Beaurepaire E (2009) Coherent ultrafast magnetism induced by femtosecond laser pulses. Nat Phys 5:515CrossRefGoogle Scholar
  16. Kampfrath T, Sell A, Klatt G, Pashkin A, Maehrlein S, Dekorsy T, Wolf M, Fiebig M, Leitenstorfer A, Huber R (2011) Coherent terahertz control of antiferromagnetic spin waves. Nat Photonics 5(1):31–34ADSCrossRefGoogle Scholar
  17. Kazantseva N, Hinzke D, Nowak U, Chantrell RW, Atxitia U, Chubykalo-Fesenko O (2008) Towards multiscale modeling of magnetic materials: simulations of FePt. Phys Rev B 77(18):184428ADSCrossRefGoogle Scholar
  18. Koopmans B, van Kampen M, Kohlhepp J, de Jonge W (2000) Ultrafast magneto-optics in nickel: magnetism or optics? Phys Rev Lett 85(4):844–847ADSCrossRefGoogle Scholar
  19. Koopmans B, Malinowski G, Dalla Longa F, Steiauf D, Fahnle M, Roth T, Cinchetti M, Aeschlimann M (2010) Explaining the paradoxical diversity of ultrafast laser-induced demagnetization. Nat Mater 9:259–265ADSCrossRefGoogle Scholar
  20. Krieger K, Dewhurst JK, Elliott P, Sharma S, Gross EKU (2015) Laser-induced demagnetization at ultrashort time scales: predictions of TDDFT. J Chem Theory Comput 11(10):4870–4874CrossRefGoogle Scholar
  21. Krieger K, Elliott P, Müller T, Singh N, Dewhurst JK, Gross EKU, Sharma S (2017) Ultrafast demagnetization in bulk versus thin films: an ab initio study. J Phys Condens Matter 29(22):224001ADSCrossRefGoogle Scholar
  22. Kubler J, Hock KH, Sticht J, Williams AR (1988) Density functional theory of non-collinear magnetism. J Phys F Met Phys 18:469ADSCrossRefGoogle Scholar
  23. La-O-Vorakiat C, Siemens M, Murnane MM, Kapteyn HC, Mathias S, Aeschlimann M, Grychtol P, Adam R, Schneider CM, Shaw JM, Nembach H, Silva TJ (2009) Ultrafast demagnetization dynamics at the m edges of magnetic elements observed using a tabletop high-harmonic soft x-ray source. Phys Rev Lett 103:257402ADSCrossRefGoogle Scholar
  24. Li Y, Ullrich CA (2008) Time-dependent v-representability on lattice systems. J Chem Phys 129(4):44105CrossRefGoogle Scholar
  25. Lisowski M, Loukakos P, Melnikov A, Radu I, Ungureanu L, Wolf M, Bovensiepen U (2005) Femtosecond electron and spin dynamics in Gd(0001) studied by time-resolved photoemission and magneto-optics. Phys Rev Lett 95(13):137402ADSCrossRefGoogle Scholar
  26. Ostler TA, Barker J, Evans RFL, Chantrell RW, Atxitia U, Chubykalo-Fesenko O, El Moussaoui S, Le Guyader L, Mengotti E, Heyderman LJ, Nolting F, Tsukamoto A, Itoh A, Afanasiev D, Ivanov BA, Kalashnikova AM, Vahaplar K, Mentink J, Kirilyuk A, Rasing T, Kimel AV (2012) Ultrafast heating as a sufficient stimulus for magnetization reversal in a ferrimagnet. Nat Commun 3:666ADSCrossRefGoogle Scholar
  27. Razdolski I, Alekhin A, Martens U, Buerstel D, Diesing D, Muenzenberg M, Bovensiepen U, Melnikov A (2017) Analysis of the time-resolved magneto- optical kerr effect for ultrafast magnetization dynamics in ferromagnetic thin films. J Phys Condes Matter 29(17): 174002ADSCrossRefGoogle Scholar
  28. Ruggenthaler M, van Leeuwen R (2011) Global fixed-point proof of time-dependent density-functional theory. EPL 95:13001ADSCrossRefGoogle Scholar
  29. Runge E, Gross EKU (1984) Density functional theory for time-dependent systems. Phys Rev Lett 52:997ADSCrossRefGoogle Scholar
  30. Schellekens AJ, Verhoeven W, Vader TN, Koopmans B (2013) Investigating the contribution of superdiffusive transport to ultrafast demagnetization of ferromagnetic thin films. Appl Phys Lett 102:252408ADSCrossRefGoogle Scholar
  31. Scholl A, Baumgarten L, Jacquemin R, Eberhardt W (1997) Ultrafast spin dynamics of ferromagnetic thin films observed by fs spin-resolved two-photon photoemission. Phys Rev Lett 79(25):5146–5149ADSCrossRefGoogle Scholar
  32. Sharma S, Dewhurst JK, Gross EKU (2014) Optical response of extended systems using time-dependent density functional theory. Top Curr Chem 347:235–257CrossRefGoogle Scholar
  33. Simoni J, Stamenova M, Sanvito S (2017) Ultrafast demagnetizing fields from first principles. Phys Rev B 95(2):024412ADSCrossRefGoogle Scholar
  34. Stamenova M, Simoni J, Sanvito S (2016) Role of spin-orbit interaction in the ultrafast demagnetization of small iron clusters. Phys Rev B 94(1):014423ADSCrossRefGoogle Scholar
  35. Stamm C, Kachel T, Pontius N, Mitzner R, Quast T, Holldack K, Khan S, Lupulescu C, Aziz EF, Wietstruk M, Durr HA, Eberhardt W (2007) Femtosecond modification of electron localization and transfer of angular momentum in nickel. Nat Mater 6:740–743ADSCrossRefGoogle Scholar
  36. van Leeuwen R (1999) Mapping from densities to potentials in time-dependent density-functional theory. Phys Rev Lett 82(19):3863–3866. ADSCrossRefGoogle Scholar
  37. Vodungbo B, Gautier J, Lambert G, Sardinha AB, Lozano M, Sebban S, Ducousso M, Boutu W, Li K, Tudu B, Tortarolo M, Hawaldar R, Delaunay R, Lopez-Flores V, Arabski J, Boeglin C, Merdji H, Zeitoun P, Luening J (2012) Laser-induced ultrafast demagnetization in the presence of a nanoscale magnetic domain network. Nat Commun 3:999ADSCrossRefGoogle Scholar
  38. Walowski J, Münzenberg M (2016) Perspective: ultrafast magnetism and THz spintronics. J Appl Phys 120(14):140901. ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Max Planck Institute of Microstructure PhysicsHalleGermany
  2. 2.School of Physics and CRANN InstituteTrinity CollegeDublinIreland
  3. 3.School of Physics, AMBER and CRANN InstituteTrinity CollegeDublinIreland
  4. 4.School of Physics and CRANN InstituteTrinity CollegeDublinIreland
  5. 5.Center for Materials GenomicsDuke UniversityDurhamUSA

Personalised recommendations