Pump-Probe Photoelectron Spectra

Reference work entry


Pump-probe photoelectron spectroscopy provides a tool to observe excitations taking place in electronic systems as they evolve in time. This technique is frequently applied to study complex phenomena taking place in chemistry and solid-state physics. To properly capture the dynamics observed in the experiments, one needs to employ non-perturbative theories capable to describe the complete time evolution of large physical systems. After a pedagogical survey on the literature, in this chapter, we focus on TDDFT and illustrate how this theory can be formulated in a way that can capture the entire ionization dynamics in atoms, molecules, and solids.



This work was partially supported by the European Research Council (ERC-2015-AdG-694097), Grupos Consolidados (IT578-13), and the European Union’s Horizon 2020 Research and Innovation Program under Grant Agreements no. 676580 (NOMAD) and 646259 (MOSTOPHOS).


  1. Andrade X, Strubbe D, De Giovannini U, Larsen AH, Oliveira MJT, Alberdi-Rodriguez J, Varas A, Theophilou I, Helbig N, Verstraete MJ, Stella L, Nogueira F, Aspuru-Guzik A, Castro A, Marques MAL, Rubio A (2015) Real-space grids and the octopus code as tools for the development of new simulation approaches for electronic systems. Phys Chem Chem Phys 17(47):31371–31396CrossRefGoogle Scholar
  2. Bachau H, Cormier E, Decleva P, Hansen JE, Martín F (2001) Applications of B-splines in atomic and molecular physics. Rep Prog Phys 64(12):1815ADSCrossRefGoogle Scholar
  3. Blaga CI, Catoire F, Colosimo P, Paulus GG, Muller HG, Agostini P, Dimauro LF (2009) Strong-field photoionization revisited. Nat Phys 5(5):335CrossRefGoogle Scholar
  4. Castro A, Marques MAL, Rubio A (2004) Propagators for the time-dependent Kohn–Sham equations. J Chem Phys 121(8):3425ADSCrossRefGoogle Scholar
  5. Catoire F, Bachau H (2012) Extraction of the absolute value of the photoelectron spectrum probability density by means of the resolvent technique. Phys Rev A 85(2):138CrossRefGoogle Scholar
  6. Crawford-Uranga A, De Giovannini U, Mowbray DJ, Kurth S, Rubio A (2014) Modelling the effect of nuclear motion on the attosecond time-resolved photoelectron spectra of ethylene. J Phys B-At Mol Opt 47(12):124018ADSCrossRefGoogle Scholar
  7. Damascelli A, Hussain Z, Shen ZX (2003) Angle-resolved photoemission studies of the cuprate superconductors. Rev Mod Phys 75(2):473ADSCrossRefGoogle Scholar
  8. De Giovannini U, Brunetto G, Brunetto G, Castro A, Walkenhorst J, Walkenhorst J, Rubio A (2013) Simulating pump-probe photoelectron and absorption spectroscopy on the attosecond timescale with time-dependent density functional theory. Chem Phys Chem 14(7):1363–1376CrossRefGoogle Scholar
  9. De Giovannini U, Larsen AH, Rubio A (2015) Modeling electron dynamics coupled to continuum states in finite volumes with absorbing boundaries. Eur Phys J B 88(3):1CrossRefGoogle Scholar
  10. De Giovannini U, Hübener H, Rubio A (2016) Monitoring electron-photon dressing in WSe2. Nano Lett 16:7993ADSCrossRefGoogle Scholar
  11. De Giovannini U, Hübener H, Rubio A (2017) A first-principles time-dependent density functional theory framework for spin and time-resolved angular-resolved photoelectron spectroscopy in periodic systems. J Chem Theory Comput 13:265CrossRefGoogle Scholar
  12. Hsieh D, Basov DN, Averitt RD (2017) Towards properties on demand in quantum materials. Nat Mater 16(11):1077ADSCrossRefGoogle Scholar
  13. Kadanoff LP, Baym G (1962) Quantum statistical mechanics. W. A. Benjamin, New YorkzbMATHGoogle Scholar
  14. Krausz F, Stockman MI (2014) Attosecond metrology: from electron capture to future signal processing. Nat Photon 8(3):205ADSCrossRefGoogle Scholar
  15. Legrand C, Suraud E, Reinhard PG (2002) Comparison of self-interaction-corrections for metal clusters. J Phys B-At Mol Opt 35(4):1115ADSCrossRefGoogle Scholar
  16. Lépine F, Ivanov MY, Ivanov MY, Vrakking MJJ, Vrakking MJJ (2014) Attosecond molecular dynamics: fact or fiction? Nat Photon 8(3):195ADSCrossRefGoogle Scholar
  17. Pendry JB (1990) Low-energy electron diffraction. In: Bortolani V, March NH, Tosi MP (eds) Interaction of atoms and molecules with solid surfaces. Phys of Solids Liq. Springer, BostonGoogle Scholar
  18. Perfetto E, Sangalli D, Marini A, Stefanucci G (2016a) First-principles approach to excitons in time-resolved and angle-resolved photoemission spectra. Phys Rev B 94(24):245303ADSCrossRefGoogle Scholar
  19. Perfetto E, Uimonen AM, van Leeuwen R, Stefanucci G (2016b) Time-resolved photoabsorption in finite systems: a first-principles NEGF approach. J Phys Conf Ser 696(1):012004CrossRefGoogle Scholar
  20. Puschnig P, Berkebile S, Fleming AJ, Koller G, Emtsev K, Seyller T, Riley JD, Ambrosch-Draxl C, Netzer FP, Ramsey MG (2009) Reconstruction of molecular orbital densities from photoemission data. Science 326(5953):702ADSCrossRefGoogle Scholar
  21. Stolow A, Bragg AE, Neumark DM (2004) Femtosecond time-resolved photoelectron spectroscopy. Chem Rev 104(4):1719CrossRefGoogle Scholar
  22. Tao L, Scrinzi A (2012) Photo-electron momentum spectra from minimal volumes: the time-dependent surface flux method. New J Phys 14(1):013021CrossRefGoogle Scholar
  23. Wopperer P, De Giovannini U, Rubio A (2017) Efficient and accurate modeling of electron photoemission in nanostructures with TDDFT. Eur Phys J B 90(3):1307CrossRefGoogle Scholar
  24. Wu G, Hockett P, Stolow A (2011) Time-resolved photoelectron spectroscopy : from wavepackets to observables. Phys Chem Chem Phys 13(41):18447CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Max Planck Institute for the Structure and Dynamics of MatterHamburgGermany

Personalised recommendations