Extending the Scale with Real-Space Methods for the Electronic Structure Problem

  • James R. ChelikowskyEmail author
Reference work entry


In principle, the electronic structure of a material can be determined by a solution of the many-body Schrödinger equation. This was first noted by Dirac shortly after the invention of quantum mechanics in 1929. However, Dirac also noted that the solution of the many-body quantum mechanical equations was much too difficult to be solved. He challenged his colleagues to develop “practical methods of applying quantum mechanics,” which can lead to an explanation of the main features of complex atomic systems.” In this chapter, we explore concepts and algorithms targeting “Dirac’s challenge.” Two key physical concepts will be employed: pseudopotential theory and density functional theory. For many weakly correlated systems, this formalism works well for ground-state properties such as phase stability, structural properties, and vibrational modes. However, applying this approach to large systems, e.g., systems with thousands of atoms, remains a challenge even with contemporary computational platforms. The goal of this chapter is to show how new algorithms can be used to extend computations to these systems. The approach centers on solving the nonlinear Kohn-Sham equation by a nonlinear form of the subspace iteration technique. This approach results in a significant speedup, often by more than an order of magnitude with no loss of accuracy. Numerical results are presented for nanoscale systems with tens of thousands of atoms and new methods are proposed to extend our work to even larger systems.



This work is supported by a subaward from the Center for Computational Study of Excited-State Phenomena in Energy Materials at the Lawrence Berkeley National Laboratory, which is funded by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division under Contract No. DE-AC02-05CH11231, as part of the Computational Materials Sciences Program.


  1. Alemany MMG, Jain M, Chelikowsky JR, Kronik L (2004) Real-space pseudopotential method for computing the electronic properties of periodic systems. Phys Rev B 69:075101ADSCrossRefGoogle Scholar
  2. Alemany MG, Huang X, Tiago ML, Chelikowsky JR (2007) The role of quantum confinement in p-type doped indium phosphide nanowires. Nano Lett 7:1878ADSCrossRefGoogle Scholar
  3. Andrade X, Aspuru-Guzik A (2013) Real-space density functional theory on graphical processing units: computational approach and comparison to gaussian basis set methods. J Chem Theor Comput 9:4360CrossRefGoogle Scholar
  4. Beck TL (2000) Real-space mesh techniques in density-functional theory. Rev Mod Phys 72:1041ADSCrossRefGoogle Scholar
  5. Boffi NM, Jain M, Natan A (2016) Efficient computation of the Hartree-Fock exchange in real space with projection operators. J Chem Theory Comput 12:3614CrossRefGoogle Scholar
  6. Chan T-L, Chelikowsky JR (2010) Controlling lithium diffusion in semiconductor nanostructures by size and dimensionality. Nano Lett 10:821ADSCrossRefGoogle Scholar
  7. Chan T-L, Tiago ML, Kaxiras E, Chelikowsky JR (2008) Size limits on doping phosphorus into silicon nanocrystals. Nano Lett 8:596ADSCrossRefGoogle Scholar
  8. Chan T-L, Zayak AT, Dalpian GM, Chelikowsky JR (2009) Role of confinement on diffusion barriers in semiconductor nanocrystals. Phys Rev Lett 102:025901ADSCrossRefGoogle Scholar
  9. Chan T-L, Lee AJ, Mok WK, Chelikowsky JR (2014) The interaction range of p-dopants in si [110] nanowires: determining the non-degenerate limit. Nano Lett 14:6306ADSCrossRefGoogle Scholar
  10. Chelikowsky JR, Cohen ML (1992) Ab initio pseudopotentials for semiconductors. In: Landsberg PT (ed) Handbook on semiconductors, vol 1. Elsevier, Amsterdam, p 59Google Scholar
  11. Chelikowsky JR, Troullier N, Saad Y (1994a) Finite-difference-pseudopotential method: electronic structure calculations without a basis. Phys Rev Lett 72:1240ADSCrossRefGoogle Scholar
  12. Chelikowsky JR, Troullier N, Wu K, Saad Y (1994b) Higher-order finite-difference pseudopotential method: an application to diatomic molecules. Phys Rev B 50:11355ADSCrossRefGoogle Scholar
  13. Chelikowsky JR, Chan T-L, Alemany MMG, Dalpian G (2011) Computational studies of doped nanostructures. Rep Prog Phys 74:046501ADSCrossRefGoogle Scholar
  14. Dalpian G, Chelikowsky JR (2006) Self-purification in semiconductor nanocrystals. Phys Rev Lett 96:226802ADSCrossRefGoogle Scholar
  15. Daniel J, Gragg WB, Kaufman L, Stewart GW (1976) Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization. Math Comput 30:772MathSciNetzbMATHGoogle Scholar
  16. Dirac PAM (1929) Quantum mechanics of many-electron systems. Proc R Soc A 123:714ADSzbMATHGoogle Scholar
  17. Enkovaara J, Rostgaard C, Mortensen JJ, Chen J, Duak M, Ferrighi L, Gavnholt J, Glinsvad C, Haikola V, Hansen HA, Kristoffersen HH, Kuisma M, Larsen AH, Lehtovaara L, Ljungberg M, Lopez-Acevedo O, Moses PG, Ojanen J, Olsen T, Petzold V, Romero NA, Stausholm-Mller J, Strange M, Tritsaris GA, Vanin M, Walter M, Hammer B, Häkkinen H, Madsen11 GKH, Nieminen RM, Nørskov JK, Puska M, Rantala TT, Schiøtz J, Thygesen KS, Jacobsen KW (2010) Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. J Phys Condens Matter 22:253202Google Scholar
  18. Fattebert J.-L., Bernholc J (2000) Towards grid-based O(N) density-functional theory methods: optimized nonorthogonal orbitals and multigrid acceleration. Phys Rev B 62:1713ADSCrossRefGoogle Scholar
  19. Fornberg B, Sloan DM (1994) A review of pseudospectral methods for solving partial differential equations. Acta Numer 3:203ADSMathSciNetzbMATHCrossRefGoogle Scholar
  20. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502CrossRefGoogle Scholar
  21. Goedecker S (1999) Linear scaling electronic structure methods. Rev Mod Phys 71:1085ADSCrossRefGoogle Scholar
  22. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864ADSMathSciNetCrossRefGoogle Scholar
  23. Kleinmann L, Bylander DM (1982) Efficacious form for model pseudopotentials. Phys Rev Lett 48:1425ADSCrossRefGoogle Scholar
  24. Koch W, Holthausen MC (2000) A chemist’s guide to density functional theory. Wiley-VCH, WeinheimGoogle Scholar
  25. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133ADSMathSciNetCrossRefGoogle Scholar
  26. Kresse G, Furthmülle J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169ADSCrossRefGoogle Scholar
  27. Kronik L, Makmal A, Tiago ML, Alemany MMG, Jain M, Huang X, Saad Y, Chelikowsky JR (2006) PARSEC – the pseudopotential algorithm for real space electronic structure calculations: recent advances and novel applications to nano-structures. Phys Status Solidi B 243:1063ADSCrossRefGoogle Scholar
  28. Lehoucq RB, Sorensen DC, Yang C (1998) ARPACK users guide: solution of large scale eigenvalue problems by implicitly restarted Arnoldi methods. SIAM, PhiladelphiazbMATHCrossRefGoogle Scholar
  29. Martin RM (2004) Electronic structure: basic theory and practical methods. Cambridge University Press, Cambridge/New YorkzbMATHCrossRefGoogle Scholar
  30. Ono T, Hirose K (2005) Real-space electronic-structure calculations with a time-saving double-grid technique. Phys Rev B 72:085115ADSCrossRefGoogle Scholar
  31. Otsuka T, Miyazaki T, Ohno T, Bowler DR, Gillan MJ (2008) Accuracy of order-n density-functional theory calculations on dna systems using conquest. J Phys Condens Matter 20:29401CrossRefGoogle Scholar
  32. Parlett BN (1998) The symmetric eigenvalue problem. SIAM, PhiladelphiazbMATHCrossRefGoogle Scholar
  33. Phillips JC (1958) Energy-band interpolation scheme based on a pseudopotential. Phys Rev 112:685ADSCrossRefGoogle Scholar
  34. Phillips JC, Kleinman L (1959) New method for calculating wave functions in crystals and molecules. Phys Rev 116:287ADSzbMATHCrossRefGoogle Scholar
  35. Saad Y (1992) Numerical methods for large eigenvalue problems. Wiley, New YorkzbMATHGoogle Scholar
  36. Saad Y, Chelikowsky JR, Shontz S (2010) Numerical methods for electronic structure calculations of materials. SIAM Rev 52:3ADSMathSciNetzbMATHCrossRefGoogle Scholar
  37. Sakai Y, Lee AJ, Chelikowsky JR (2016) First-principles non-contact atomic force microscopy image simulations with frozen density embedding theory. Nano Lett 16:3242ADSCrossRefGoogle Scholar
  38. Schofield G, Chelikowsky JR, Saad Y (2012a) A spectrum slicing method for the Kohn-Sham problem. Comput Phys Commun 183:497ADSMathSciNetzbMATHCrossRefGoogle Scholar
  39. Schofield G, Chelikowsky JR, Saad Y (2012b) Using Chebyshev-filtered subspace iteration and windowing methods to solve the Kohn-Sham problem, chap. 6. In: Leszczynski J, Shulka MK (eds) Practical aspects of computational chemistry I: an overview of the last two decades and current trends, vol 167. Springer, BerlinGoogle Scholar
  40. Seitsonen P, Puska MJ, Nieminen RM (1995) Real-space electronic-structure calculations: combination of the finite-difference and conjugate-gradient methods. Phys Rev B 51:14057ADSCrossRefGoogle Scholar
  41. Sham LJ, Schlüter M (1983) Density functional theory of the energy gap. Phys Rev B 51:1888ADSGoogle Scholar
  42. Stathopoulos A, Öğüt S, Saad Y, Chelikowsky JR, Kim H (2000) Parallel methods and tools for predicting material properties. IEEE Comput Sci Eng 2:19CrossRefGoogle Scholar
  43. Teter MP, Allan DC, Arias TA, Joannopoulos JD (1992) Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev Mod Phys 64:1045ADSCrossRefGoogle Scholar
  44. Tiago ML, Zhou Y, Alemany MMG, Saad Y, Chelikowsky JR (2006) The evolution of magnetism in iron from the atom to the bulk. Phys Rev Lett 97:147201ADSCrossRefGoogle Scholar
  45. Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43:1993ADSCrossRefGoogle Scholar
  46. Wu K, Simon H (2000) Thick-restart Lanczos method for large symmetric eigenvalue problems. SIAM J Matrix Anal 22:602MathSciNetzbMATHCrossRefGoogle Scholar
  47. Wu K, Canning A, Simon HD, Wang L-W (1999) Thick-restart Lanczos method for electronic structure calculations. J Comput Phys 154:156ADSMathSciNetzbMATHCrossRefGoogle Scholar
  48. Zhao Y, Du M-H, Kim Y-H, Zhang SB (2004) First-principles prediction of icosahedral quantum dots for tetravalent semiconductors. Phys Rev Lett 93:015502ADSCrossRefGoogle Scholar
  49. Zhou Y, Saad Y (2007) A Chebyshev–Davidson algorithm for large symmetric eigenproblems. SIAM J Matrix Anal Appl 29:954MathSciNetzbMATHCrossRefGoogle Scholar
  50. Zhou Y, Saad Y, Tiago M, Chelikowsky JR (2006a) Parallel self-consistent-field calculations via Chebyshev-filtered subspace acceleration. Phys Rev E 74:066704ADSzbMATHCrossRefGoogle Scholar
  51. Zhou Y, Tiago ML, Saad Y, Chelikowsky JR (2006b) Chebyshev-filtered subspace iteration method free of sparse diagonalization for solving the Kohn–Sham equation. J Comput Phys 219:172ADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Center for Computational Materials, Institute for Computational Engineering and Sciences, Departments of Physics and Chemical EngineeringThe University of Texas at AustinAustinUSA

Personalised recommendations