Optimal Control Theory for Electronic Structure Methods

Reference work entry


Optimal control theory (OCT) is a branch of mathematics that deals with the problem of finding optimal trajectories for dynamical systems. It can be used in combination with time-dependent quantum mechanical methods that describe the evolution of the electronic and/or nuclear wave functions of atoms, molecules, or materials in the presence of external perturbations, such as electromagnetic fields. OCT may then find the optimal shape of those external perturbations: the optimal character is defined in terms of a functional of the behavior of the system. This chapter provides a brief description of the basic elements of the theory and an overview of its applications to quantum dynamics and electronic structure.



This work was supported by the Ministerio de Economía y Competitividad (MINECO) grants FIS2013-46159-C3-P2, FIS2017-82426-P, and FIS2014-61301-EXP.


  1. Attaccalite C, Moroni S, Gori-Giorgi P, Bachelet GB (2002) Correlation energy and spin polarization in the 2D electron gas. Phys Rev Lett 88(25):256601ADSCrossRefGoogle Scholar
  2. Beck M, Jackle A, Worth G, Meyer HD (2000) The multiconfiguration time-dependent hartree (mctdh) method: a highly efficient algorithm for propagating wavepackets. Phys Rep 324(1): 1–105ADSCrossRefGoogle Scholar
  3. Bellman R (1957) Dynamic programming, 1st edn. Princeton University Press, PrincetonzbMATHGoogle Scholar
  4. Bloembergen N, Zewail AH (1984) Energy redistribution in isolated molecules and the question of mode-selective laser chemistry revisited. J Phys Chem 88(23):5459–5465CrossRefGoogle Scholar
  5. Boltyanskii VG, Gamkrelidze RV, Pontryagin LS (1956) On the theory of optimal processes (Russian). Dokl Akad Nauk SSSR (NS) 110:7Google Scholar
  6. Brif C, Chakrabarti R, Rabitz H (2010) Control of quantum phenomena: past present and future. New J Phys 12(7):075,008CrossRefGoogle Scholar
  7. Brumer P, Shapiro M (1986a) Coherent radiative control of unimolecular reactions. Three-dimensional results. Faraday Discuss Chem Soc 82:177–185CrossRefGoogle Scholar
  8. Brumer P, Shapiro M (1986b) Control of unimolecular reactions using coherent light. Chem Phys Lett 126(6):541–546ADSCrossRefGoogle Scholar
  9. Brumer P, Shapiro M (1989) Coherence chemistry: controlling chemical reactions [with lasers]. Acc Chem Res 22(12):407–413CrossRefGoogle Scholar
  10. Brumer P, Shapiro M (2003) Principles of the quantum control of molecular processes. Wiley, New YorkzbMATHGoogle Scholar
  11. Castro A (2016) Theoretical shaping of femtosecond laser pulses for molecular photodissociation with control techniques based on Ehrenfest’s dynamics and time-dependent density functional theory. ChemPhysChem 17(11):1601–1607CrossRefGoogle Scholar
  12. Castro A, Appel H, Oliveira M, Rozzi CA, Andrade X, Lorenzen F, Marques MAL, Gross EKU, Rubio A (2006) Octopus: a tool for the application of time-dependent density functional theory. Phys Status Solidi (b) 243:2465–2488ADSCrossRefGoogle Scholar
  13. Castro A, Werschnik J, Gross EKU (2012) Controlling the dynamics of many-electron systems from first principles: a combination of optimal control and time-dependent density-functional theory. Phys Rev Lett 109:153603ADSCrossRefGoogle Scholar
  14. Gaubatz U, Rudecki P, Becker M, Schiemann S, Külz M, Bergmann K (1988) Population switching between vibrational levels in molecular beams. Chem Phys Lett 149(5):463–468ADSCrossRefGoogle Scholar
  15. Gómez Pueyo A, Budagosky M JA, Castro A (2016) Optimal control with nonadiabatic molecular dynamics: application to the Coulomb explosion of sodium clusters. Phys Rev A 94:063421ADSCrossRefGoogle Scholar
  16. Judson RS, Rabitz H (1992) Teaching lasers to control molecules. Phys Rev Lett 68:1500–1503ADSCrossRefGoogle Scholar
  17. Kirk DE (1998) Optimal control theory. An introduction. Dover Publications, Inc., New YorkGoogle Scholar
  18. Kosloff R, Rice SA, Gaspard P, Tersigni S, Tannor DJ (1989) Wavepacket dancing: achieving chemical selectivity by shaping light pulses. Chem Phys 139:201–220CrossRefGoogle Scholar
  19. Krausz F, Ivanov M (2009) Attosecond physics. Rev Mod Phys 81:163–234ADSCrossRefGoogle Scholar
  20. Kuklinski JR, Gaubatz U, Hioe FT, Bergmann K (1989) Adiabatic population transfer in a three-level system driven by delayed laser pulses. Phys Rev A 40:6741–6744ADSCrossRefGoogle Scholar
  21. Maiman TH (1960) Stimulated optical radiation in ruby. Nature 187:493–494ADSCrossRefGoogle Scholar
  22. Marques MAL, Maitra NT, Nogueira FMS, Gross EKU, Rubio A (eds) (2012) Fundamentals of time-dependent density functional theory. Springer, Berlin/HeidelbergGoogle Scholar
  23. Marques MAL, Castro A, Bertsch GF, Rubio A (2003) Octopus: a first-principles tool for excited electron-ion dynamics. Comput Phys Commun 151:60–78ADSCrossRefGoogle Scholar
  24. Mundt M, Tannor DJ (2009) Optimal control of interacting particles: a multi-configuration time-dependent Hartree-Fock approach. New J Phys 11(10):105038MathSciNetCrossRefGoogle Scholar
  25. Nest M, Klamroth T, Saalfrank P (2005) The multiconfiguration time-dependent Hartree-Fock method for quantum chemical calculations. J Chem Phys 122(12):124102ADSCrossRefGoogle Scholar
  26. Newton I (1671) A letter of Mr. Isaac Newton, Professor of the Mathematics in the University of Cambridge; containing his new theory about light and colors. Philos Trans 6:3075–3087Google Scholar
  27. Peirce A, Dahleh M, Rabitz H (1988) Optimal control of quantum-mechanical systems: existence, numerical approximation, and applications. Phys Rev A 37(12):4950ADSMathSciNetCrossRefGoogle Scholar
  28. Pontryagin LS, Boltyanskii VG, Gamkrelidze RV, Mishchenko EF (1962) The mathematical theory of optimal processes. Wiley, New YorkzbMATHGoogle Scholar
  29. Raab A (2000) On the Dirac-Frenkel/Mclachlan variational principle. Chem Phys Lett 319(5): 674–678ADSCrossRefGoogle Scholar
  30. Rabitz H, de Vivie-Riedle R, Motzkus M, Kompa K (2000) Whither the future of controlling quantum phenomena? Science 288:824ADSCrossRefGoogle Scholar
  31. Raghunathan S, Nest M (2011) Critical examination of explicitly time-dependent density functional theory for coherent control of dipole switching. J Chem Theory Comput 7(8):2492–2497CrossRefGoogle Scholar
  32. Räsänen E, Castro A, Werschnik J, Rubio A, Gross EKU (2007) Optimal control of quantum rings by terahertz laser pulses. Phys Rev Lett 98:157404ADSCrossRefGoogle Scholar
  33. Rice SA, Zhao M (2000) Optical control of molecular dynamics. Wiley, New YorkGoogle Scholar
  34. Runge E, Gross EKU (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52:997–1000ADSCrossRefGoogle Scholar
  35. Shi S, Rabitz H (1989) Selective excitation in harmonic molecular systems by optimally designed fields. Chem Phys 139:185–199ADSCrossRefGoogle Scholar
  36. Shi S, Woody A, Rabitz H (1988) Optimal control of selective vibrational excitation in harmonic linear chain molecules. J Chem Phys 88(11):6870ADSCrossRefGoogle Scholar
  37. Tannor DJ, Rice SA (1985) Control of selectivity of chemical reaction via control of wave packet evolution. J Chem Phys 83(10):5013–5018ADSCrossRefGoogle Scholar
  38. Tannor DJ, Kosloff R, Rice SA (1986) Coherent pulse sequence induced control of selectivity of reactions: exact quantum mechanical calculations. J Chem Phys 85(10):5805–5820ADSCrossRefGoogle Scholar
  39. van Leeuwen R (1999) Mapping from densities to potentials in time-dependent density-functional theory. Phys Rev Lett 82(19):3863–3866ADSCrossRefGoogle Scholar
  40. van Leeuwen R, Stefanucci G (2013) Nonequilibrium many-body theory of quantum systems. Cambridge University Press, CambridgezbMATHGoogle Scholar
  41. Walkenhorst J, De Giovannini U, Castro A, Rubio A (2016) Tailored pump-probe transient spectroscopy with time-dependent density-functional theory: controlling absorption spectra. Eur Phys J B 89(5):128ADSMathSciNetCrossRefGoogle Scholar
  42. Weiner AM (2000) Femtosecond pulse shaping using spatial light modulators. Rev Sci Instrum 71(5):1929–1960ADSCrossRefGoogle Scholar
  43. Zhu W, Rabitz H (1998) A rapid monotonically convergent iteration algorithm for quantum optimal control over the expectation value of a positive definite operator. J Chem Phys 109(2):385–391ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.ARAID Foundation and Institute for Biocomputation and Physics of Complex Systems of the University of ZaragozaZaragozaSpain

Personalised recommendations