The Long and Winding Road: Predicting Materials Properties Through Theory and Computation

Reference work entry


First-principles simulations of materials provide both computational microscopes and predictive tools, which we aspire to turn into design strategies for materials with target properties. One requisite to meet this goal is the enablement of predictions of material properties on a large scale, so as to generate a vast amount of validated computational data that may eventually be used to solve inverse problems. However it is challenging to use big data to address the “why question.” First-principles calculations of specific materials and properties can instead be extremely effective at answering the “why question,” namely, at unraveling mechanisms and providing fundamental, physical insights, thus paving the way to innovative design strategies. In this chapter, we present first-principles predictions of material properties relevant to energy conversion processes. We also discuss some open challenges related to automated integration of theory and computation with experiments and with validated, interpreted data.



This work was supported by DOE-BES under the MICCoM grant.


  1. Adorf CS, Dodd PM, Ramasubrami V, Glotzer SC (2018) Simple data and workflow management with the signac framework. Comput Mater Sci 146:220CrossRefGoogle Scholar
  2. Bennett CH, DiVincenzo DP (2000) Quantum information and computation. Nature 404:247–255ADSzbMATHCrossRefGoogle Scholar
  3. Bhat TN, Bartolo LM, Kattner UR, Campbell CE, Elliot JT (2015) Strategy for extensible, evolving terminology for the materials genome initiative efforts. JOM 67:1866CrossRefGoogle Scholar
  4. Blaiszik B, Chard K, Pruyne J, Ananthakrishnan R, Tuecke S, Foster I (2016) The materials data facility: data services to advance materials science research. JOM 68:8CrossRefGoogle Scholar
  5. Blum V, Gehrke R, Hanke F, Havu P, Havu V, Ren X, Reuter K, Scheffler M (2009) Ab initio molecular simulations with numeric atom-centered orbitals. Comput Phys Commun 180:2175–2196ADSzbMATHCrossRefGoogle Scholar
  6. Castelli IE, Hüser F, Pandey M, Li H, Thygesen KS, Seger B, Jain A, Persson KA, Ceder G, Jacobsen KW (2015) New light-harvesting materials using accurate and efficient bandgap calculations. Adv Energy Mater 5:1400915CrossRefGoogle Scholar
  7. Chard K, Dart E, Foster I, Shifflett D, Tuecke S, Williams J (2018) The Modern Research Data Portal: a design pattern for networked, data-intensive science. PeerJ Comput Sci 4:e144CrossRefGoogle Scholar
  8. Curtarolo S, Setyawan W, Wang S, Xue J, Yang K, Taylor RH, Nelson LJ, Hart GLW, Sanvito S, Buongiorno-Nardelli M, Mingo N, Levy O (2012) AFLOWLIB.ORG: a distributed materials properties repository from high-throughput ab initio calculations. Comput Mater Sci 58:227CrossRefGoogle Scholar
  9. De Mauro A, Greco M, Grimaldi M (2015) What is big data? A consensual definition and a review of key research topics. AIP Conf Proc 1644:97–104ADSCrossRefGoogle Scholar
  10. De Yoreo J, Mandrus D, Soderholm L (2016) Basic research needs for synthesis science: report of the basic energy sciences workshop on synthesis science for energy relevant technology.
  11. Freire J, Chirigati F (2018) Provenance and the different flavors of computational reproducibility. IEEE Data Eng Bull 41(1):15–26.
  12. Gerosa M, Gygi F, Govoni M, Galli G (2018) The role of defects and excess surface charges at finite temperature for optimizing oxide photoabsorbers. Nat Mater 17:1122–1127ADSCrossRefGoogle Scholar
  13. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) QUANTUM ESPRESSO: a modular and open- source software project for quantum simulations of materials. J Phys Condens Matter 21:395502CrossRefGoogle Scholar
  14. Govoni M, Munakami M, Tanikanti A, Skone JH, Runesha HB, Giberti F, de Pablo J, Galli G (2019) Qresp, a tool for curating, discovering, and exploring reproducible scientific papers. Sci Data 6:190002.
  15. Greeley J, Jaramillo TF, Bonde J, Chorkendorff IB, Nørskov JK (2006) Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater 5:909–913ADSCrossRefGoogle Scholar
  16. Greenwood AR, Vörös M, Giberti F, Galli G (2018) Emergent electronic and dielectric properties of interacting nanoparticles at finite temperature. Nano Lett 18:255–261ADSCrossRefGoogle Scholar
  17. Gygi F (2008) Architecture of Qbox: a scalable first-principles molecular dynamics code. IBM J Res Dev 52:137–144CrossRefGoogle Scholar
  18. Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118:8207ADSCrossRefGoogle Scholar
  19. Heyd J, Scuseria GE, Ernzerhof M (2006) Erratum: hybrid functionals based on a screened Coulomb potential. J Chem Phys 124:219906ADSCrossRefGoogle Scholar
  20. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864ADSMathSciNetCrossRefGoogle Scholar
  21. Hutter J, Iannuzzi M, Schiffmann F, VandeVondele J (2014) CP2K: atomistic simulations of condensed matter systems. Wiley Interdiscip Rev Comput Mol Sci 4:15–25CrossRefGoogle Scholar
  22. Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson KA (2013a) Commentary: the materials project: a materials genome approach to accelerating materials innovation. Appl Mater 1:011002ADSCrossRefGoogle Scholar
  23. Jain A, Castelli IE, Hautier G, Bailey DH, Jacobsen KW (2013b) Performance of genetic algorithms in search for water splitting perovskites. J Mater Sci 48:6519–6534ADSCrossRefGoogle Scholar
  24. Jain A, Ong SP, Chen W, Medasani B, Qu X, Kocher M, Brafman M, Petretto G, Rignanese G-M, Hautier G, Gunter D, Persson KA (2015) FireWorks: a dynamic workflow system designed for high-throughput applications. Concurr Comput Pract Exp 27:5037CrossRefGoogle Scholar
  25. Jain A, Persson KA, Ceder G (2016) Research update: the materials genome initiative: data sharing and the impact of collaborative ab initio databases. APL Mater 4:053102ADSCrossRefGoogle Scholar
  26. Kaipio J, Somersalo E (2005) Statistical and computational inverse problems. Springer, New YorkzbMATHGoogle Scholar
  27. Kalidindi SR, De Graef M (2015) Materials data science: current status and future outlook. Annu Rev Mater Res 45:171. Scholar
  28. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133ADSMathSciNetCrossRefGoogle Scholar
  29. Kovalenko MV (2013) Chemical design of nanocrystal solids. Chimia 67:316–321CrossRefGoogle Scholar
  30. Kresse G, Furthmüller J (1996a) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15. Scholar
  31. Kresse G, Furthmüller J (1996b) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169. Scholar
  32. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558. Scholar
  33. Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys Rev B 49:14251. Scholar
  34. Kroemer H (2000) Quasi-electric fields and band offsets: teaching electrons new tricks. Nobel Prize Lecture, Stockholm. Scholar
  35. Lee J-S, Kovalenko MV, Huang J, Chung DS, Talapin DV (2011) Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. Nat Nanotechnol 6:348–352ADSCrossRefGoogle Scholar
  36. Liu W, Lee J-S, Talapin DV (2013) III–V Nanocrystals capped with molecular metal chalcogenide ligands: high electron mobility and ambipolar photoresponse. J Am Chem Soc 135:1349–1357CrossRefGoogle Scholar
  37. Martin RM (2004) Electronic structure: basic theory and practical methods. Cambridge University Press, CambridgezbMATHCrossRefGoogle Scholar
  38. Martin RM, Reining L, Ceperley DM (2016) Interacting electrons: theory and computational approaches. Cambridge University Press, CambridgeGoogle Scholar
  39. McKone JR, Lewis NS, Gray HB (2013) Will solar-driven water-splitting devices see the light of day? Chem Mater 26:407–414CrossRefGoogle Scholar
  40. Meng H, Thain D (2017) Facilitating the reproducibility of scientific workflows with execution environment specifications. Proc Comput Sci 108:705. Scholar
  41. Obama B (2011) Remarks by the President at Carnegie Mellon University’s National Robotics Engineering Center. The Obama White House Archives.
  42. Perdew JP, Ernzerhof M, Burke K (1996) Rationale for mixing exact exchange with density functional approximations. J Chem Phys 105:9982ADSCrossRefGoogle Scholar
  43. Pham TA, Ping Y, Galli G (2017) Modelling heterogeneous interfaces for solar water splitting. Nat Mater 16:401–408ADSCrossRefGoogle Scholar
  44. Pizzi G, Cepellotti A, Sabatini R, Marzari N, Kozinsky B (2016) AiiDA: automated interactive infrastructure and database for computational science. Comput Mater Sci 111:218CrossRefGoogle Scholar
  45. Rajan K (2015) Materials informatics: the materials “gene” and big data. Annu Rev Mater Res 45:153. Scholar
  46. Saal JE, Kirklin S, Aykol M, Meredig B, Wolverton C (2013) Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD). JOM 65:1501CrossRefGoogle Scholar
  47. Scalise E, Srivastava V, Janke E, Talapin DV, Galli G, Wippermann S (2018) Surface chemistry and buried interfaces in all-inorganic nanocrystalline solids. Nat Nanotechnol 13:841–848ADSCrossRefGoogle Scholar
  48. Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter 14:2745ADSCrossRefGoogle Scholar
  49. Talapin DV (2012) Nanocrystal solids: a modular approach to materials design. MRS Bull 37:63–71CrossRefGoogle Scholar
  50. Talapin DV, Lee J-S, Kovalenko MV, Shevchenko EV (2010) Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev 110:389–458CrossRefGoogle Scholar
  51. Thygesen KS, Jacobsen KW (2016) Making the most of materials computations. Science 354:180. Scholar
  52. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Solar water splitting cells. Chem Rev 110:6446–6473CrossRefGoogle Scholar
  53. Wippermann S, Vörös M, Rocca D, Gali A, Zimanyi G, Galli G (2013) High-pressure core structures of Si nanoparticles for solar energy conversion. Phys Rev Lett 110:046804ADSCrossRefGoogle Scholar
  54. Wippermann S, Vörös M, Gali A, Gygi F, Zimanyi G, Galli G (2014) Solar nanocomposites with complementary charge extraction pathways for electrons and holes: Si embedded in ZnS. Phys Rev Lett 112:106801ADSCrossRefGoogle Scholar
  55. Wippermann S, He Y, Vörös M, Galli G (2016) Novel silicon phases and nanostructures for solar energy conversion. Appl Phys Rev 3:040807CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Chemistry, Institute for Molecular EngineeringThe University of ChicagoChicagoUSA

Section editors and affiliations

  • Wanda Andreoni
    • 1
  • Sidney Yip
    • 2
  1. 1.Institute of PhysicsSwiss Federal Institute of Technology - LausanneLausanneSwitzerland
  2. 2.Department of Nuclear Science & EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations