Multiscale Concepts in Simulations of Organic Semiconductors

Reference work entry


We critically review simulation approaches developed to study organic solar cells, light emitting diodes, and field effect transistors. Special attention is paid to multiscale techniques. In particular, we discuss how to parametrize coarse-grained models for morphology and charge transport simulations, to account for finite-size effects, and to treat long-range interactions in small systems.



This work was supported in part by the BMBF grants MEDOS (FKZ 03EK3503B), MESOMERIE (FKZ 13N10723), and InterPhase (FKZ 13N13661). The project has received funding from the NMP-20-2014 – “Widening materials models” program under Grant Agreement No. 646259 (MOSTOPHOS). DFG is acknowledged for financial support through the collaborative research center TRR 146.


  1. Abe M, Mori T, Osaka I, Sugimoto K, Takimiya K (2015) Thermally, operationally, and environmentally stable organic thin-film transistors based on Bis[1]benzothieno[2,3-d:2’,3’-d’]naphtho[2,3-b:6,7-b’]dithiophene derivatives: effective synthesis, electronic structures, and structure–property relationship. Chem Mater 27(14):5049–5057. CrossRefGoogle Scholar
  2. Athanasopoulos S, Kirkpatrick J, Martínez D, Frost JM, Foden CM, Walker AB, Nelson J (2007) Predictive study of charge transport in disordered semiconducting polymers. Nano Lett 7(6):1785–1788. ADSCrossRefGoogle Scholar
  3. Bässler H (1993) Charge transport in disordered organic photoconductors: a Monte Carlo simulation study. Physica Status Solidi (b) 175(1):15–56. ADSCrossRefGoogle Scholar
  4. Baumeier B, Stenzel O, Poelking C, Andrienko D, Schmidt V (2012) Stochastic modeling of molecular charge transport networks. Phys Rev B 86(18):184202. ADSCrossRefGoogle Scholar
  5. Borsenberger P, Pautmeier L, Bässler H (1991) Charge transport in disordered molecular solids. J Chem Phys 94(8):5447.,
  6. Borsenberger P, Pautmeier L, Bässler H (1992) Nondispersive-to-dispersive charge-transport transition in disordered molecular solids. Phys Rev B 46(19):12145–12153.,
  7. Borsenberger PM, Magin EH, Van Auweraer MD, De Schryver FC (1993) The role of disorder on charge transport in molecularly doped polymers and related materials. Physica Status Solidi (a) 140(1):9–47.,
  8. Brereton T, Stenzel O, Baumeier B, Andrienko D, Schmidt V, Kroese D (2014) Efficient simulation of Markov Chains using segmentation. Methodol Comput Appl Probab 16(2):465–484. MathSciNetCrossRefGoogle Scholar
  9. Cottaar J, Koster LJA, Coehoorn R, Bobbert PA (2011) Scaling theory for percolative charge transport in disordered molecular semiconductors. Phys Rev Lett 107(13):136601. ADSCrossRefGoogle Scholar
  10. D’Avino G, Muccioli L, Castet F, Poelking C, Andrienko D, Soos ZG, Jérôme Cornil, Beljonne D (2016) Electrostatic phenomena in organic semiconductors: fundamentals and implications for photovoltaics. J Phys Condens Matter 28(43):433002.,
  11. Derrida B (1983) Velocity and diffusion constant of a periodic one-dimensional hopping model. J Stat Phys 31(3):433–450. ADSMathSciNetCrossRefGoogle Scholar
  12. Ebata H, Izawa T, Miyazaki E, Takimiya K, Ikeda M, Kuwabara H, Yui T (2007) Highly soluble [1]Benzothieno[3,2-b]benzothiophene (BTBT) derivatives for high-performance, solution-processed organic field-effect transistors. J Am Chem Soc 129(51):15732–15733. CrossRefGoogle Scholar
  13. Ewald PP (1921) Die Berechnung optischer und elektrostatischer Gitterpotentiale. Annalen der Physik 369(3):253–287. ADSCrossRefGoogle Scholar
  14. Fitzner R, Reinold E, Mishra A, Mena-Osteritz E, Ziehlke H, Körner C, Leo K, Riede M, Weil M, Tsaryova O, Weiß A, Uhrich C, Pfeiffer M, Bäuerle P (2011) Dicyanovinyl–Substituted Oligothiophenes: structure-property relationships and application in vacuum-processed small molecule organic solar cells. Adv Funct Mater 21(5):897–910. CrossRefGoogle Scholar
  15. Freire JA, Tonezer C (2009) Density of states and energetic correlation in disordered molecular systems due to induced dipoles. J Chem Phys 130(13):134901. ADSCrossRefGoogle Scholar
  16. Kirkpatrick J, Marcon V, Nelson J, Kremer K, Andrienko D (2007) Charge mobility of discotic mesophases: a multiscale quantum and classical study. Phys Rev Lett 98(22):227402. ADSCrossRefGoogle Scholar
  17. Knapp E, Häusermann R, Schwarzenbach HU, Ruhstaller B (2010) Numerical simulation of charge transport in disordered organic semiconductor devices. J Appl Phys 108(5):054504. ADSCrossRefGoogle Scholar
  18. Kordt P, Andrienko D (2016) Modeling of spatially correlated energetic disorder in organic semiconductors. J Chem Theory Comput 12(1):36–40. CrossRefGoogle Scholar
  19. Kordt P, Stenzel O, Baumeier B, Schmidt V, Andrienko D (2014) Parametrization of extended Gaussian disorder models from microscopic charge transport simulations. J Chem Theory Comput 10(6):2508–2513. CrossRefGoogle Scholar
  20. Kordt P, van der Holst JJM, Al Helwi M, Kowalsky W, May F, Badinski A, Lennartz C, Andrienko D (2015a) Modeling of organic light emitting diodes: from molecular to device properties. Adv Funct Mater 25(13):1955–1971. CrossRefGoogle Scholar
  21. Kordt P, Stodtmann S, Badinski A, Helwi MA, Lennartz C, Andrienko D (2015b) Parameter-free continuous drift–diffusion models of amorphous organic semiconductors. Phys Chem Chem Phys 17(35):22778–22783.,
  22. Kordt P, Speck T, Andrienko D (2016) Finite-size scaling of charge carrier mobility in disordered organic semiconductors. Phys Rev B 94:014208. ADSCrossRefGoogle Scholar
  23. Lukyanov A, Andrienko D (2010) Extracting nondispersive charge carrier mobilities of organic semiconductors from simulations of small systems. Phys Rev B 82(19):193202. ADSCrossRefGoogle Scholar
  24. Lyubartsev AP, Laaksonen A (1995) Calculation of effective interaction potentials from radial distribution functions: a reverse Monte Carlo approach. Phys Rev E 52(4):3730–3737. ADSCrossRefGoogle Scholar
  25. May F, Al-Helwi M, Baumeier B, Kowalsky W, Fuchs E, Lennartz C, Andrienko D (2012a) Design rules for charge-transport efficient host materials for phosphorescent organic light-emitting diodes. J Am Chem Soc 134(33):13818–13822. CrossRefGoogle Scholar
  26. May F, Baumeier B, Lennartz C, Andrienko D (2012b) Can lattice models predict the density of states of amorphous organic semiconductors? Phys Rev Lett 109(13):136401. ADSCrossRefGoogle Scholar
  27. Murtola T, Bunker A, Vattulainen I, Deserno M, Karttunen M (2009) Multiscale modeling of emergent materials: biological and soft matter. Phys Chem Chem Phys 11(12):1869–1892.,
  28. Nelson J, Kwiatkowski JJ, Kirkpatrick J, Frost JM (2009) Modeling charge transport in organic photovoltaic materials. Acc Chem Res 42(11):1768–1778. CrossRefGoogle Scholar
  29. Novikov SV, Dunlap DH, Kenkre VM, Parris PE, Vannikov AV (1998) Essential role of correlations in governing charge transport in disordered organic materials. Phys Rev Lett 81(20):4472–4475. ADSCrossRefGoogle Scholar
  30. Pasveer WF, Cottaar J, Tanase C, Coehoorn R, Bobbert PA, Blom PWM, de Leeuw DM, Michels MAJ (2005) Unified description of charge-carrier mobilities in disordered semiconducting polymers. Phys Rev Lett 94(20):206601. ADSCrossRefGoogle Scholar
  31. Poelking C, Andrienko D (2013) Effect of polymorphism, regioregularity and paracrystallinity on charge transport in poly(3-hexylthiophene) [P3ht] nanofibers. Macromolecules 46(22): 8941–8956. ADSCrossRefGoogle Scholar
  32. Poelking C, Andrienko D (2015) Design rules for organic donor-acceptor heterojunctions: pathway for charge splitting and detrapping. J Am Chem Soc 6320–6326.
  33. Poelking C, Andrienko D (2016) Long-range embedding of molecular ions and excitations in a polarizable molecular environment. J Chem Theory Comput 12(9):4516–4523. CrossRefGoogle Scholar
  34. Poelking C, Cho E, Malafeev A, Ivanov V, Kremer K, Risko C, Brédas JL, Andrienko D (2013) Characterization of charge-carrier transport in semicrystalline polymers: electronic couplings, site energies, and charge-carrier dynamics in poly(bithiophene-alt-thienothiophene) [PBTTT]. J Phys Chem C 117(4):1633–1640. CrossRefGoogle Scholar
  35. Poelking C, Tietze M, Elschner C, Olthof S, Hertel D, Baumeier B, Würthner F, Meerholz K, Leo K, Andrienko D (2014) Impact of mesoscale order on open-circuit voltage in organic solar cells. Nat Mater 14(4):434–439. ADSCrossRefGoogle Scholar
  36. Reith D, Pütz M, Müller-Plathe F (2003) Deriving effective mesoscale potentials from atomistic simulations. J Comput Chem 24(13):1624–1636. CrossRefGoogle Scholar
  37. Ren P, Ponder JW (2003) Polarizable atomic multipole water model for molecular mechanics simulation. J Phys Chem B 107(24):5933–5947. CrossRefGoogle Scholar
  38. Rühle V, Junghans C, Lukyanov A, Kremer K, Andrienko D (2009) Versatile object-oriented toolkit for coarse-graining applications. J Chem Theory Comput 5(12):3211–3223. CrossRefGoogle Scholar
  39. Rühle V, Lukyanov A, May F, Schrader M, Vehoff T, Kirkpatrick J, Baumeier B, Andrienko D (2011) Microscopic simulations of charge transport in disordered organic semiconductors. J Chem Theory Comput 7(10):3335–3345. CrossRefGoogle Scholar
  40. Scher H, Montroll EW (1975) Anomalous transit-time dispersion in amorphous solids. Phys Rev B 12(6):2455–2477. ADSCrossRefGoogle Scholar
  41. Schrader M, Fitzner R, Hein M, Elschner C, Baumeier B, Leo K, Riede M, Bäuerle P, Andrienko D (2012a) Comparative study of microscopic charge dynamics in crystalline acceptor-substituted oligothiophenes. J Am Chem Soc 134(13):6052–6056. CrossRefGoogle Scholar
  42. Schrader M, Körner C, Elschner C, Andrienko D (2012b) Charge transport in amorphous and smectic mesophases of dicyanovinyl-substituted oligothiophenes. J Mater Chem 22(41): 22258–22264.,
  43. Schwarze M, Tress W, Beyer B, Gao F, Scholz R, Poelking C, Ortstein K, Günther AA, Kasemann D, Andrienko D, Leo K (2016) Band structure engineering in organic semiconductors. Science 352(6292):1446–1449.,
  44. Seki K, Tachiya M (2001) Electric field dependence of charge mobility in energetically disordered materials: polaron aspects. Phys Rev B 65:014305. ADSCrossRefGoogle Scholar
  45. Smith ER (1981) Electrostatic energy in ionic crystals. Proc R Soc London A Math Phys Sci 375(1763):475–505ADSMathSciNetzbMATHGoogle Scholar
  46. Soper AK (1996) Empirical potential Monte Carlo simulation of fluid structure. Chem Phys 202(2–3):295–306.,
  47. Stenzel O, Hirsch C, Brereton T, Baumeier B, Andrienko D, Kroese D, Schmidt V (2014) A general framework for consistent estimation of charge transport properties via random walks in random environments. Multiscale Model Simul 12(3):1108–1134. MathSciNetCrossRefGoogle Scholar
  48. Tschoep W, Kremer K, Batoulis J, Buerger T, Hahn O (1998) Simulation of polymer melts. I. Coarse-graining procedure for polycarbonates. Acta Polym 49(2–3):61–74.<61::AID-APOL61>3.0.CO;2-V Google Scholar
  49. van der Holst JJM, van Oost FWA, Coehoorn R, Bobbert PA (2011) Monte Carlo study of charge transport in organic sandwich-type single-carrier devices: effects of Coulomb interactions. Phys Rev B 83(8):085206. ADSCrossRefGoogle Scholar
  50. Yimer Y, Bobbert P, Coehoorn R (2009) Charge transport in disordered organic host–guest systems: effects of carrier density and electric field. Synth Met 159(21–22):2399–2401.,

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Max Planck Institute for Polymer ResearchMainzGermany

Personalised recommendations