Advertisement

Diagrammatic Monte Carlo and GW Approximation for Jellium and Hydrogen Chain

  • Kris Van Houcke
  • Igor S. TupitsynEmail author
  • Nikolay V. Prokof’ev
Reference work entry
  • 5 Downloads

Abstract

Within the general framework of skeleton diagrammatic expansions, the fully self-consistent GW approximation (sc-GW) is the simplest scheme based on the lowest-order diagrams. However, this established method for electronic structure calculations is rarely used in its original form when the polarization function is obtained from the product of two fully dressed single-particle Green’s functions because its most serious deficiency is known to be an incorrect prediction of the dielectric response. In this contribution, we examine the sc-GW approximation for the homogeneous electron gas and find that problems with the dielectric response are solved by enforcing the particle number conservation law in the polarization function. Our protocol for restoring physical properties of the sc-GW approximation (and more advanced schemes based on computing higher-order vertex corrections) is physically transparent and easy to implement at no additional computational cost. We further examine the accuracy of the sc-GW approximation and systematic convergence of the bold diagrammatic Monte Carlo scheme to the exact result for the single-orbital hydrogen chain system.

References

  1. Aryasetiawan F, Gunnarsson O (1998) The GW method. Rep Prog Phys 61(3):237. http://stacks.iop.org/0034-4885/61/i=3/a=002 ADSCrossRefGoogle Scholar
  2. Baym G (1962) Self-consistent approximations in many-body systems. Phys Rev 127:1391–1401. https://link.aps.org/doi/10.1103/PhysRev.127.1391 ADSMathSciNetCrossRefGoogle Scholar
  3. Baym G, Kadanoff LP (1961) Conservation laws and correlation functions. Phys Rev 124:287–299. https://link.aps.org/doi/10.1103/PhysRev.124.287 ADSMathSciNetCrossRefGoogle Scholar
  4. Ceperley DM, Alder BJ (1980) Ground state of the electron gas by a stochastic method. Phys Rev Lett 45:566–569. https://link.aps.org/doi/10.1103/PhysRevLett.45.566 ADSCrossRefGoogle Scholar
  5. Fetter AL, Walecka JD (1971) Quantum theory of many-particle systems. McGraw-Hill, New YorkGoogle Scholar
  6. García-González P, Godby RW (2001) Self-consistent calculation of total energies of the electron gas using many-body perturbation theory. Phys Rev B 63:075112. https://link.aps.org/doi/10.1103/PhysRevB.63.075112 ADSCrossRefGoogle Scholar
  7. Goulko O, Mishchenko AS, Pollet L, Prokof’ev N, Svistunov B (2017) Numerical analytic continuation: answers to well-posed questions. Phys Rev B 95:014102. https://link.aps.org/doi/10.1103/PhysRevB.95.014102 ADSCrossRefGoogle Scholar
  8. Hachmann J, Cardoen W, Chan GKL (2006) Multireference correlation in long molecules with the quadratic scaling density matrix renormalization group. J Chem Phys 125:144101. http://aip.scitation.org/doi/full/10.1063/1.2345196 ADSCrossRefGoogle Scholar
  9. Hedin L (1965) New method for calculating the one-particle green’s function with application to the electron-gas problem. Phys Rev 139:A796–A823. https://link.aps.org/doi/10.1103/PhysRev.139.A796 ADSCrossRefGoogle Scholar
  10. Holm B (1999) Total energies from GW calculations. Phys Rev Lett 83:788–791. https://link.aps.org/doi/10.1103/PhysRevLett.83.788 ADSCrossRefGoogle Scholar
  11. Holm B, von Barth U (1998) Fully self-consistent GW self-energy of the electron gas. Phys Rev B 57:2108–2117. https://link.aps.org/doi/10.1103/PhysRevB.57.2108 ADSCrossRefGoogle Scholar
  12. Kulagin SA, Prokof’ev N, Starykh OA, Svistunov B, Varney CN (2013) Bold diagrammatic monte carlo technique for frustrated spin systems. Phys Rev B 87:024407. https://link.aps.org/doi/10.1103/PhysRevB.87.024407 ADSCrossRefGoogle Scholar
  13. Luttinger JM, Ward JC (1960) Ground-state energy of a many-fermion system. II. Phys Rev 118:1417–1427. https://link.aps.org/doi/10.1103/PhysRev.118.1417 ADSMathSciNetCrossRefGoogle Scholar
  14. Mahan GD (2000) Many-particle physics. Springer, BostonCrossRefGoogle Scholar
  15. Mishchenko AS (2012) Correlated electrons: from models to materials. In: Pavarini E, Koch W, Anders F, Jarrel M (eds). Forschungszentrum Julich GmbH, JulichGoogle Scholar
  16. Motta M, Ceperley DM, Chan GKL, Gomez JA, Gull E, Guo S, Jimenez-Hoyos C, Lan TN, Li J, Ma F, Millis AJ, Prokof’ev NV, Ray U, Scuseria GE, Sorella S, Stoudenmire EM, Sun Q, Tupitsyn IS, White SR, Zgid D, Zhang S (2017) Towards the solution of the many-electron problem in real materials: equation of state of the hydrogen chain with state-of-the-art many-body methods. Phys Rev X 7:031059. https://journals.aps.org/prx/abstract/10.1103/PhysRevX.7.031059 Google Scholar
  17. Nozieres P, Pines D (1999) Theory of quantum liquids, chapters 2 and 3. Westview Press, BoulderGoogle Scholar
  18. Onida G, Reining L, Rubio A (2002) Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev Mod Phys 74:601–659. https://link.aps.org/doi/10.1103/RevModPhys.74.601 ADSCrossRefGoogle Scholar
  19. Ortiz G, Ballone P (1994) Correlation energy, structure factor, radial distribution function, and momentum distribution of the spin-polarized uniform electron gas. Phys Rev B 50:1391–1405. https://link.aps.org/doi/10.1103/PhysRevB.50.1391 ADSCrossRefGoogle Scholar
  20. Ortiz G, Harris M, Ballone P (1999) Zero temperature phases of the electron gas. Phys Rev Lett 82:5317–5320. https://link.aps.org/doi/10.1103/PhysRevLett.82.5317 ADSCrossRefGoogle Scholar
  21. Prokof’ev N, Svistunov B (2007) Bold diagrammatic Monte Carlo technique: when the sign problem is welcome. Phys Rev Lett 99:250201. https://link.aps.org/doi/10.1103/PhysRevLett.99.250201 ADSCrossRefGoogle Scholar
  22. Rossi R (2017) Determinant diagrammatic monte carlo algorithm in the thermodynamic limit. Phys Rev Lett 119:045701. https://link.aps.org/doi/10.1103/PhysRevLett.119.045701 ADSCrossRefGoogle Scholar
  23. Rossi R, Prokof’ev N, Svistunov B, Van Houcke K, Werner F (2017) Polynomial complexity despite the fermionic sign. EPL 118(1):10004. https://doi.org/10.1209/0295-5075/118/10004 ADSCrossRefGoogle Scholar
  24. Schöne WD, Eguiluz AG (1998) Self-consistent calculations of quasiparticle states in metals and semiconductors. Phys Rev Lett 81:1662–1665. https://link.aps.org/doi/10.1103/PhysRevLett.81.1662 ADSCrossRefGoogle Scholar
  25. Tupitsyn IS, Prokof’ev NV (2017) Stability of Dirac liquids with strong Coulomb interaction. Phys Rev Lett 118:026403. https://link.aps.org/doi/10.1103/PhysRevLett.118.026403 ADSCrossRefGoogle Scholar
  26. Tupitsyn IS, Mishchenko AS, Nagaosa N, Prokof’ev N (2016) Coulomb and electron-phonon interactions in metals. Phys Rev B 94:155145. https://link.aps.org/doi/10.1103/PhysRevB.94.155145 ADSCrossRefGoogle Scholar
  27. Van Houcke K, Werner F, Kozik E, Prokof/’ev N, Svistunov B, Ku MJH, Sommer AT, Cheuk LW, Schirotzek A, Zwierlein MW (2012) Feynman diagrams versus Fermi-gas Feynman emulator. Nat Phys 8(5):366–370.  https://doi.org/10.1038/nphys2273
  28. Van Houcke K, Tupitsyn IS, Mishchenko AS, Prokof’ev NV (2017) Dielectric function and thermodynamic properties of jellium in the GW approximation. Phys Rev B 95:195131. https://link.aps.org/doi/10.1103/PhysRevB.95.195131 ADSCrossRefGoogle Scholar
  29. Yan XZ (2011) Approximation for discrete Fourier transform and application in study of three-dimensional interacting electron gas. Phys Rev E 84:016706. https://link.aps.org/doi/10.1103/PhysRevE.84.016706 ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Kris Van Houcke
    • 1
  • Igor S. Tupitsyn
    • 2
    Email author
  • Nikolay V. Prokof’ev
    • 2
  1. 1.Laboratoire de Physique Statistique, Ecole Normale Supérieure, UPMCUniversité Paris Diderot, CNRSParisFrance
  2. 2.Department of PhysicsUniversity of MassachusettsAmherstUSA

Personalised recommendations