Temporal Acceleration in Coupled Continuum-Atomistic Methods

Reference work entry


In order to speed up molecular simulations, coupled continuum-atomistic methods have been developed in which atomistic resolution is only retained in regions of interest with the rest of the model approximated as a continuum. In parallel, there have been efforts to extend the time scale accessible in molecular simulations by filtering out atomic vibrations and focusing on the more interesting dynamics associated with the formation and motion of defects. This article focuses on a current research trend to combine these two complementary approaches into a unified framework that can simultaneously span multiple length and time scales from the microscopic to the macroscopic. As a specific example, the combination of the spatial quasicontinuum (QC) method with the temporal hyperdynamics method to create “hyper-QC” is described.



WKK and EBT were supported in part by the National Science Foundation (NSF) through a collaborative research grant under Award Numbers CMMI-1463038 and CMMI-1462807, respectively.


  1. Curtin WA, Miller RE (2003) Atomistic/continuum coupling methods in multi-scale materials modeling. Model Simul Mater Sci Eng 11:R33–R68ADSCrossRefGoogle Scholar
  2. Dupuy LM, Tadmor EB, Miller RE, Phillips R (2005) Finite temperature quasicontinuum: molecular dynamics without all the atoms. Phys Rev Lett 95:060202ADSCrossRefGoogle Scholar
  3. Germann TC, Kadau K (2008) Trillion-atom molecular dynamics becomes a reality. Int J Mod Phys C 19:1315–1319ADSCrossRefGoogle Scholar
  4. Gnecco E, Bennewitz R, Gyalog T, Loppacher C, Bammerlin M, Meyer E, Güntherodt HJ (2000) Velocity dependence of atomic friction. Phys Rev Lett 84:1172–1175ADSCrossRefGoogle Scholar
  5. Henkelman G, Jónsson H (2001) Long time scale kinetic Monte Carlo simulations without lattice approximation and predefined event table. J Chem Phys 115:9657–9666ADSCrossRefGoogle Scholar
  6. Jaynes ET (1957a) Information theory and statistical mechanics. Part I. Phys Rev 106:620–630ADSMathSciNetCrossRefGoogle Scholar
  7. Jaynes ET (1957b) Information theory and statistical mechanics. Part II. Phys Rev 108:171–190ADSMathSciNetCrossRefGoogle Scholar
  8. Kim WK, Falk ML (2010) Accelerated molecular dynamics simulation of low-velocity frictional sliding. Model Simul Mater Sci Eng 18:034003ADSCrossRefGoogle Scholar
  9. Kim WK, Tadmor EB (2017) Accelerated quasicontinuum: a practical perspective on hyper-QC with application to nanoindentation. Philos Mag 97:2284–2316ADSCrossRefGoogle Scholar
  10. Kim WK, Luskin M, Perez D, Voter AF, Tadmor EB (2014) Hyper-QC: an accelerated finite-temperature quasicontinuum method using hyperdynamics. J Mech Phys Solids 63:94–112ADSCrossRefGoogle Scholar
  11. Kirkwood JG (1935) Statistical mechanics of fluid mixtures. J Chem Phys 3:300–313ADSCrossRefGoogle Scholar
  12. Knap J, Ortiz M (2001) An analysis of the quasicontinuum method. J Mech Phys Solids 49: 1899–1923ADSCrossRefGoogle Scholar
  13. Kulkarni Y, Knap J, Ortiz M (2008) A variational approach to coarse graining of equilibrium and non-equilibrium atomistic description at finite temperature. J Mech Phys Solids 56:1417–1449ADSMathSciNetCrossRefGoogle Scholar
  14. Laio A, Parrinello M (2002) Escaping free-energy minima. Proc Natl Acad Sci USA 99: 12562–12566ADSCrossRefGoogle Scholar
  15. LeSar R, Najafabadi R, Srolovitz D (1989) Finite-temperature defect properties from free-energy minimization. Phys Rev Lett 63:624–627ADSCrossRefGoogle Scholar
  16. Li J, Sarkar S, Cox WT, Lenosky TJ, Bitzek E, Wang Y (2011) Diffusive molecular dynamics and its application to nanoindentation and sintering. Phys Rev B 84:054103ADSCrossRefGoogle Scholar
  17. Miller RE, Tadmor EB (2002) The quasicontinuum method: overview, applications, and current directions. J Comput Aided Mater Des 9:203–239ADSCrossRefGoogle Scholar
  18. Miller RE, Tadmor EB (2009) A unified framework and performance benchmark of fourteen multiscale atomistic/continuum coupling methods. Model Simul Mater Sci Eng 17:053001ADSCrossRefGoogle Scholar
  19. Miron RA, Fichthorn KA (2003) Accelerated molecular dynamics with the bond-boost method. J Chem Phys 119:6210–6216ADSCrossRefGoogle Scholar
  20. Ponga M, Ortiz M, Ariza M (2015) Finite-temperature non-equilibrium quasi-continuum analysis of nanovoid growth in copper at low and high strain rates. Mech Mater 90:253–267CrossRefGoogle Scholar
  21. Ponga M, Ramabathiran AA, Bhattacharya K, Ortiz M (2016) Dynamic behavior of nano-voids in magnesium under hydrostatic tensile stress. Model Simul Mater Sci Eng 24:065003ADSCrossRefGoogle Scholar
  22. Shenoy VB, Miller R, Tadmor EB, Rodney D, Phillips R, Ortiz M (1999) An adaptive finite element approach to atomic-scale mechanics: the quasicontinuum method. J Mech Phys Solids 47: 611–642ADSMathSciNetCrossRefGoogle Scholar
  23. Sørensen MR, Voter AF (2000) Temperature-accelerated dynamics for simulation of infrequent events. J Chem Phys 112:9599–9606ADSCrossRefGoogle Scholar
  24. Tadmor EB, Miller RE (2011) Modeling materials: continuum, atomistic and multiscale techniques. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  25. Tadmor EB, Ortiz M, Phillips R (1996) Quasicontinuum analysis of defects in solids. Philos Mag A 73:1529–1563ADSCrossRefGoogle Scholar
  26. Tadmor EB, Smith GS, Bernstein N, Kaxiras E (1999) Mixed finite element and atomistic formulation for complex crystals. Phys Rev B 59:235–245ADSCrossRefGoogle Scholar
  27. Tadmor EB, Legoll F, Kim WK, Dupuy LM, Miller RE (2013) Finite-temperature quasi-continuum. Appl Mech Rev 65:010803ADSCrossRefGoogle Scholar
  28. Tomlinson GA (1929) A molecular theory of friction. Philos Mag 7:905–939CrossRefGoogle Scholar
  29. Vanden-Eijnden E, Tal FA (2005) Transition state theory: variational formulation, dynamical corrections, and error estimates. J Chem Phys 123:184103ADSCrossRefGoogle Scholar
  30. Venturini G, Wang K, Romero I, Ariza MP, Ortiz M (2014) Atomistic long-term simulation of heat and mass transport. J Mech Phys Solids 73:242–268ADSMathSciNetCrossRefGoogle Scholar
  31. Voter AF (1997) A method for accelerating the molecular dynamics simulation of infrequent events. J Chem Phys 106:4665–4667ADSCrossRefGoogle Scholar
  32. Voter AF (1998) Parallel replica method for dynamics of infrequent events. Phys Rev B 57: 13985–13988ADSCrossRefGoogle Scholar
  33. Voter AF (2007) Introduction to the kinetic Monte Carlo method. In: Sickafus KE, Kotomin EA, BP Uberagua (eds) Radiation effects in solids. Springer, NATO Publishing Unit, Dordrecht, pp. 1–23Google Scholar
  34. Zhou XW, Johnson RA, Wadley HNG (2004) Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys Rev B 69:144113ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Mechanical and Materials EngineeringUniversity of CincinnatiCincinnatiUSA
  2. 2.Department of Aerospace Engineering and MechanicsUniversity of MinnesotaMinneapolisUSA

Personalised recommendations