Advertisement

Connecting Lower and Higher Scales in Crystal Plasticity Modeling

  • David L. McDowellEmail author
Reference work entry
  • 71 Downloads

Abstract

Metallic materials have a hierarchy of structures ranging in scale from nm to mm. We generalize the notion of crystalline plasticity models to include a range of model constructs that address phenomena associated with evolution of dislocations in crystals across a range of length and timescales. These model constructs range from coarse-grained atomistics, microscopic phase field models, and dislocation field models, to discrete dislocation dynamics, statistical continuum dislocation models, and on up to mesoscale generalized continuum models of gradient, micropolar, or micromorphic type, as well as local continuum crystal plasticity that can be applied over many grains. Key phenomena are introduced and mapped onto the capabilities of various scale-specific model constructs for dislocation plasticity. We discuss concurrent and hierarchical multiscale model transitions in space and time and summarize key challenges in closing.

Notes

Acknowledgments

The author is grateful for the support of the Carter N. Paden, Jr. Distinguished Chair in Metals Processing at Georgia Tech, as well as prior support in pursuit of various aspects of metal plasticity from AFOSR, ONR, ARO, Eglin AFB, DARPA, NAVAIR, GE, Pratt & Whitney, Boeing, QuesTek, Simulia, the NSF-funded PSU-GT Center for Computational Materials Design (IIP-0541678, IIP-1034968), and NSF Grants CMMI-1232878, CMMI-0758265, CMMI-1030103, and CMMI-1333083.

References

  1. Abu Al-Rub RK, Voyiadjis GZ, Bammann DJ (2007) A thermodynamic based higher-order gradient theory for size dependent plasticity. Int J Solids Struct 44:2888–2923Google Scholar
  2. Acharya A (2001) A model of crystal plasticity based on the theory of continuously distributed dislocations. J Mech Phys Solids 49:761–784CrossRefADSzbMATHGoogle Scholar
  3. Acharya A (2003) Driving forces and boundary conditions in continuum dislocation mechanics. Proc R Soc Lond A 459:1343–1363CrossRefADSMathSciNetzbMATHGoogle Scholar
  4. Acharya A, Roy A, Sawant A (2006) Continuum theory and methods for coarse-grained, mesoscopic plasticity. Scr Mater 54:705–710CrossRefGoogle Scholar
  5. Acharya A, Beaudoin AJ, Miller R (2008) New perspectives in plasticity theory: dislocation nucleation, waves and partial continuity of the plastic strain rate. Math Mech Solids 13(3–4):292–315CrossRefMathSciNetzbMATHGoogle Scholar
  6. Akarapu S, Zbib HM, Bahr DF (2010) Analysis of heterogeneous deformation and dislocation dynamics in single crystal micropillars under compression. Int J Plast 16:239–257CrossRefzbMATHGoogle Scholar
  7. Amelang JS, Venturini GN, Kochmann DM (2013) Microstructure evolution during nanoindentation by the quasicontinuum method. Proc Appl Math Mech 13:553–556CrossRefGoogle Scholar
  8. Amelang JS, Venturini GN, Kochmann DM (2015) Summation rules for a fully nonlocal energy-based quasicontinuum method. J Mech Phys Solids 82:378–413CrossRefADSMathSciNetGoogle Scholar
  9. Amodeo RJ, Ghoniem NM (1988) A review of experimental-observations and theoretical-models of dislocation cells and subgrains. Res Mechanica 23(2–3):137–160Google Scholar
  10. Amodeo RJ, Ghoniem NM (1990) Dislocation dynamics. I. A proposed methodology for micromechanics. Phys Rev B 41:6958CrossRefADSGoogle Scholar
  11. Arsenlis A, Parks DM (1999) Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density. Acta Mater 47(5):1597–1611CrossRefGoogle Scholar
  12. Arsenlis A, Parks DM (2002) Modeling the evolution of crystallographic dislocation density in crystal plasticity. J Mech Phys Solids 50:1979–2009CrossRefADSzbMATHGoogle Scholar
  13. Arsenlis A, Cai W, Tang M, Rhee M, Oppelstrup T, Hommes G, Pierce TG, Bulatov VV (2007) Enabling strain hardening simulations with dislocation dynamics. Model Simul Mater Sci Eng 15:553–595CrossRefADSGoogle Scholar
  14. Asaro RJ (1983) Crystal plasticity. ASME J Appl Mech 50:921–934CrossRefzbMATHGoogle Scholar
  15. Aslan O, Cordero NM, Gaubert A, Forest S (2011) Micromorphic approach to single crystal plasticity and damage. Int J Eng Sci 49:1311–1325Google Scholar
  16. Baker KL, Curtin WA (2016) Multiscale diffusion method for simulations of long-time defect evolution with application to dislocation climb. J Mech Phys Solids 92:297–312CrossRefADSGoogle Scholar
  17. Bayley CJ, Brekelmans WAM, Geers MGD (2006) A comparison of dislocation-induced back stress formulations in strain gradient crystal plasticity. Int J Solids Struct 43:7268–7286CrossRefzbMATHGoogle Scholar
  18. Bertin N, Upadhyay MV, Pradalier C, Capolungo L (2015) A FFT-based formulation for efficient mechanical fields computation in isotropic and anisotropic periodic discrete dislocation dynamics. Model Simul Mater Sci Eng 23(6):065009CrossRefADSGoogle Scholar
  19. Bieler TR, Eisenlohr P, Roters F, Kumar D, Mason DE, Crimp MA, Raabe D (2009) The role of heterogeneous deformation on damage nucleation at grain boundaries in single phase metals. Int J Plast 25:1655–1683Google Scholar
  20. Binder A, Luskin M, Perez D, Voter AF (2015) Analysis of transition state theory rates upon spatial coarse-graining. Multiscale Model Simul 13:890–915CrossRefMathSciNetzbMATHGoogle Scholar
  21. Buehler MJ, Hartmaier A, Duchaineau MA, Abraham FF, Gao H (2005) The dynamical complexity of work-hardening: a large-scale molecular dynamics simulation. Acta Mech Sinica 21:103–111CrossRefADSzbMATHGoogle Scholar
  22. Buchheit TE, Wellman GW, Battaille C (2005) Investigating the limits of polycrystal plasticity modeling. Int J Plast 21(2):221–249Google Scholar
  23. Busso EP, Meissonnier FT, O’Dowd NP (2000) Gradient-dependent deformation of two-phase single crystals. J Mech Phys Solids 48:2333–2361CrossRefADSzbMATHGoogle Scholar
  24. Cai W, Arsenlis A, Weingberger CR, Bulatov VV (2006) A non-singular continuum theory of dislocations. J Mech Phys Solids 54:561–587CrossRefADSMathSciNetzbMATHGoogle Scholar
  25. Cai W, Sills RB, Barnett DM, Nix WD (2014) Modeling a distribution of point defects as misfitting inclusions in stressed solids. J Mech Phys Solids 66:154–171CrossRefADSzbMATHGoogle Scholar
  26. Chen L, Chen J, Lebensohn R, Chen L-Q (2014) An integrated fast Fourier transform-based phase-field and crystal plasticity approach to model recrystallization of three dimensional polycrystals. Comput Methods Appl Mech Eng 285:829–848CrossRefADSMathSciNetzbMATHGoogle Scholar
  27. Chen Y (2009) Reformulation of microscopic balance equations for multiscale materials modeling. J Chem Phys 130:134706CrossRefADSGoogle Scholar
  28. Cheong KS, Busso EP, Arsenlis A (2005) A study of microstructural length scale effects on the behaviour of fcc polycrystals using strain gradient concepts. Int J Plast 21:1797–1814Google Scholar
  29. Cho J, Junge T, Molinari F-F, Anciaux G (2015) Toward a 3D coupled atomistics and discrete dislocation dynamics simulation: dislocation core structures and Peierls stresses with several character angles in FCC aluminum. Adv Model Simul Eng Sci 2:12. https://doi.org/10.1186/s40323-015-0028-6CrossRefGoogle Scholar
  30. Cordero NM, Gaubert A, Forest S, Busso EP, Gallerneau F, Kruch S (2010) Size effects in generalised continuum crystal plasticity for two-phase laminates. J Mech Phys Solids 58:1963–1994CrossRefADSMathSciNetzbMATHGoogle Scholar
  31. Cordero NM, Forest S, Busso EP (2013) Micromorphic modelling of grain size effects in metal polycrystals. GAMM-Mitteilungen 36(2):186–202CrossRefMathSciNetzbMATHGoogle Scholar
  32. Crone JC, Chung PW, Leiter KW, Knap J, Aubry S, Hommes G, Arsenlis A (2014) A multiply parallel implementation of finite element-based discrete dislocation dynamics for arbitrary geometries. Model Simul Mater Sci Eng 22:035014–035041CrossRefADSGoogle Scholar
  33. Deng J, El-Azab A (2010) Temporal statistics and coarse graining of dislocation ensembles. Philos Mag 90(27–28):3651–3678CrossRefADSGoogle Scholar
  34. Devincre, B, Madec R, Monnet G, Queyreau S, Gatti R, Kubin L (2011) Modeling crystal plasticity with dislocation dynamics simulations: the ‘microMegas’ code. In: Mechanics of nano-objects. Presses del’Ecole des Mines de Paris, Paris, pp 81–100Google Scholar
  35. Dewald MP, Curtin WA (2007a) Multiscale modelling of dislocation/grain boundary interactions. II. Screw dislocations impinging on tilt boundaries in Al. Philos Mag 87:4615–4641CrossRefADSGoogle Scholar
  36. Dewald MP, Curtin WA (2007b) Multiscale modeling of dislocation/grain boundary interactions: I. Edge dislocations impinging on S11 (113) tilt boundary in Al. Model Simul Mater Sci Eng 15:S193–S215CrossRefADSGoogle Scholar
  37. Dewald MP, Curtin WA (2011) Multiscale modeling of dislocation/grain-boundary interactions: III. 60° dislocations impinging on Σ3:Σ9 and Σ11 tilt boundaries in Al. Model Simul Mater Sci Eng 19:055002CrossRefADSGoogle Scholar
  38. Dunne FPE, Kiwanuka R, Wilkinson AJ (2012) Crystal plasticity analysis of micro-deformation, lattice rotation and geometrically necessary dislocation density. Proc R Soc A 468:2509–2531CrossRefADSGoogle Scholar
  39. Eidel B, Stukowski A (2009) A variational formulation of the quasicontinuum method based on energy sampling in clusters. J Mech Phys Solids 57:87–108CrossRefADSMathSciNetzbMATHGoogle Scholar
  40. El-Azab A (2000) Statistical mechanics treatment of the evolution of dislocation distributions in single crystals. Phys Rev B 61(18):11956–11966CrossRefADSGoogle Scholar
  41. El-Azab A (2006) Statistical mechanics of dislocation systems. Scr Mater 54:723–727CrossRefGoogle Scholar
  42. El-Azab A, Deng J, Tang M (2007) Statistical characterization of dislocation ensembles. Philos Mag 87(8–9):1201–1223CrossRefADSGoogle Scholar
  43. Evers LP, Brekelmans WAM, Geers MGD (2004) Non-local crystal plasticity model with intrinsic SSC and GND effects. J Mech Phys Solids 52:2379–2401Google Scholar
  44. Forest S, Sievert R (2003) Elastoviscoplastic constitutive frameworks for generalized continua. Acta Mech 160:71–111CrossRefzbMATHGoogle Scholar
  45. Forest S, Barbe F, Cailletaud G (2000) Cosserat modelling of size effects in the mechanical behaviour of polycrystals and multi-phase materials. Int J Solids Struct 37:7105–7126CrossRefMathSciNetzbMATHGoogle Scholar
  46. Gerken JM, Dawson PR (2008) A crystal plasticity model that incorporates stresses and strains due to slip gradients. J Mech Phys Solids 56(4):1651–1672CrossRefADSMathSciNetzbMATHGoogle Scholar
  47. Ghoniem NM (2005) A perspective on dislocation dynamics. In: Yip S (ed) Handbook of materials modeling, vol 1. Methods and models. Springer, Dordrecht, pp 1–7Google Scholar
  48. Ghosh S, Lee K, Raghavan P (2001) A multi-level computational model for multi-scale damage analysis in composite and porous materials. Int J Solids Struct 38(14):2335–2385CrossRefzbMATHGoogle Scholar
  49. Ghosh S, Bai J, Raghavan P (2007) Concurrent multi-level model for damage evolution in micro structurally debonding composites. Mech Mater 39(3):241–266CrossRefGoogle Scholar
  50. Ghosh S, Shahba A, Tu X, Huskins EL, Schuster BE (2016a) Crystal plasticity FE modeling of Ti alloys for a range of strain-rates. Part II: image-based model with experimental validation. Int J Plast 87:69–85CrossRefGoogle Scholar
  51. Ghosh S, Weber G, Keshavarz S (2016b) Multiscale modeling of polycrystalline nickel-based superalloys accounting for subgrain microstructures. Mech Res Commun 78:34–46CrossRefGoogle Scholar
  52. Groh S, Zbib HM (2009) Advances in discrete dislocations dynamics and multiscale modeling. J Eng Mater Technol 131:041209-1–041209-10CrossRefGoogle Scholar
  53. Groh S, Marin EB, Horstemeyer MF, Zbib HM (2009) Multiscale modeling of the plasticity in an aluminum single crystal. Int J Plast 25:1456–1473CrossRefzbMATHGoogle Scholar
  54. Groma I (1997) Link between the microscopic and mesocopic length-scale description of the collective behavior of dislocations. Phys Rev B 56(10):5807–5813CrossRefADSGoogle Scholar
  55. Groma I (2010) Statistical physical approach to describe the collective properties of dislocations. In: Gumbsch P, Pippan R (eds) Multiscale modelling of plasticity and fracture by means of dislocation mechanics. CISM International Centre for Mechanical Sciences, Vienna, pp 213–270. ISBN 978-3-7091-0283-1CrossRefzbMATHGoogle Scholar
  56. Groma I, Csikor FF, Zaiser M (2003) Spatial correlations and higher-order gradient terms in a continuum description of dislocation dynamics. Acta Mater 51:1271CrossRefGoogle Scholar
  57. Groma I, Vandrus Z, Ispanovity PD (2015) Scale-free phase field theory of dislocations. Phys Rev Lett 114:015503CrossRefADSGoogle Scholar
  58. Groma I, Zaiser M, Ispanovity PD (2016) Dislocation patterning in a 2D continuum theory of dislocations. arXiv:1601.07831 [cond-mat.mtrl-sci]Google Scholar
  59. Gulluoglu AN, Srolovitz DJ, Lesar R, Lomdahl PS (1989) Dislocation distributions in two dimensions. Scr Metall 23:1347–1352Google Scholar
  60. Gurtin ME (2002) A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. J Mech Phys Solids 50(1):5–32CrossRefADSMathSciNetzbMATHGoogle Scholar
  61. Gurtin ME, Anand L (2007) A gradient theory for single-crystal plasticity. Model Simul Mater Sci Eng 15:S263–S270CrossRefADSGoogle Scholar
  62. Guruprasad PJ, Benzerga AA (2008) Size effects under homogeneous deformation of single crystals: a discrete dislocation analysis. J Mech Phys Solids 56:132–156CrossRefADSzbMATHGoogle Scholar
  63. Hartley CS, Mishin Y (2005) Representation of dislocation cores using Nye tensor distributions. Mater Sci Eng A 400–401:18–21CrossRefGoogle Scholar
  64. Hochrainer T (2015) Multipole expansion of continuum dislocation dynamics in terms of alignment tensors. Philos Mag 95:1321–1367CrossRefADSGoogle Scholar
  65. Hochrainer T, Zaiser M, Gumbsch P (2007) A three-dimensional continuum theory of dislocation systems: kinematics and mean-field formulation. Philos Mag 87:1261–1282CrossRefADSGoogle Scholar
  66. Hochrainer T, Sandfeld S, Zaiser M, Gumbsch P (2014) Continuum dislocation dynamics: towards a physical theory of crystal plasticity. J Mech Phys Solids 63:167–178CrossRefADSGoogle Scholar
  67. Hurtado DE, Ortiz M (2013) Finite element analysis of geometrically necessary dislocations in crystal plasticity. Int J Numer Methods Eng 93:66–79CrossRefMathSciNetzbMATHGoogle Scholar
  68. Hussein AM, El-Awady JA (2016) Quantifying dislocation microstructure evolution and cyclic hardening in fatigued face-centered cubic single crystals. J Mech Phys Solids 91:126–144CrossRefADSGoogle Scholar
  69. Irving J, Kirkwood J (1950) The statistical mechanical theory of transport processes. IV The equations of hydrodynamics. J Chem Phys 8:817–829CrossRefADSMathSciNetGoogle Scholar
  70. Kang K, Yin J, Cai W (2014) Stress dependence of cross slip energy barrier for face-centered cubic nickel. J Mech Phys Solids 62:181–193CrossRefADSGoogle Scholar
  71. Kapetanou O, Koutsos V, Theotokoglou E, Weygand D, Zaiser M (2015) Statistical analysis and stochastic dislocation based modeling of microplasticity. J Mech Behav Mater 24(3–4):105–113Google Scholar
  72. Keralavarma SM, Benzerga AA (2015) High-temperature discrete dislocation plasticity. J Mech Phys Solids 82:1–22CrossRefADSMathSciNetGoogle Scholar
  73. Keshavarz S, Ghosh S (2013) Multi-scale crystal plasticity finite element model approach to modeling nickel-based superalloys. Acta Mater 61:6549–6561CrossRefGoogle Scholar
  74. Keshavarz S, Ghosh S (2015) Hierarchical crystal plasticity FE model for nickel-based superalloys: sub-grain microstructures to polycrystalline aggregates. Int J Solids Struct 55:17–31CrossRefGoogle Scholar
  75. Khraishi T, Zbib HM (2002) Free-surface effects in 3D dislocation dynamics: formulation and modeling. ASME J Eng Mater Technol 124(3):342–351CrossRefGoogle Scholar
  76. Kim WK, Luskin M, Perez D, Voter AF, Tadmor EB (2014) Hyper-QC: an accelerated finite-temperature quasicontinuum method using hyperdynamics. J Mech Phys Solids 63:94–112CrossRefADSzbMATHGoogle Scholar
  77. Kirkwood JG (1946) The statistical mechanical theory of transport processes. I. General theory. J Chem Phys 14:180CrossRefADSGoogle Scholar
  78. Knap J, Ortiz M (2001) An analysis of the quasicontinuum method. J Mech Phys Solids 49:1899–1923CrossRefADSzbMATHGoogle Scholar
  79. Kochmann DM, Venturini GN (2014) A meshless quasicontinuum method based on local maximum-entropy interpolation. Model Simul Mater Sci Eng 22:034007–034035CrossRefADSGoogle Scholar
  80. Kouznetsova VG, Geers MGD, Brekelmans WAM (2004) Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput Methods Appl Mech Eng 193(48–51):5525–5550CrossRefADSzbMATHGoogle Scholar
  81. Kwon S, Lee Y, Park JY, Sohn D, Lim JH, Im S (2009) An efficient three-dimensional adaptive quasicontinuum method using variable-node elements. J Comput Phys 228:4789–4810CrossRefADSzbMATHGoogle Scholar
  82. Lepinoux J, Kubin LP (1987) The dynamic organization of dislocation structures – a simulation. Scr Metall 21:833–838CrossRefGoogle Scholar
  83. LeSar R, Rickman JM (2004) Incorporation of local structure in continuous theory of dislocations. Phys Rev B 69:172105Google Scholar
  84. Liu B, Arsenlis A, Aubry S (2016) Computing forces on interface elements exerted by dislocations in an elastically anisotropic crystalline material. Model Simul Mater Sci Eng 24:055013CrossRefADSGoogle Scholar
  85. Lloyd JT (2010) Implications of limited slip in crystal plasticity. M.S. Thesis, Woodruff School of Mechanical Engineering, Georgia Institute of TechnologyGoogle Scholar
  86. Ma A, Roters F, Raabe D (2006) A dislocation density based constitutive model for crystal plasticity FEM including geometrically necessary dislocations. Acta Mater 54:2169–2179CrossRefGoogle Scholar
  87. Marian J, Venturini G, Hansen BL, Knap J, Ortiz M, Campbell GH (2010) Finite-temperature extension of the quasicontinuum method using Langevin dynamics: entropy losses and analysis of errors. Model Simul Mater Sci Eng 18(1):015003CrossRefADSGoogle Scholar
  88. Martınez E, Mariana J, Arsenlis A, Victoria M, Perlado JM (2008) Atomistically informed dislocation dynamics in fcc crystals. J Mech Phys Solids 56:869–895CrossRefADSMathSciNetzbMATHGoogle Scholar
  89. Matveev MV, Selivanikova OV, Cherepanov DN (2016) Formation of deformation substructures in FCC crystals under the influence of point defect fluxes. Mater Sci Eng 124:012129Google Scholar
  90. Mayeur JR, McDowell DL (2011) Bending of single crystal thin films as predicted by micropolar crystal plasticity. Int J Eng Sci 49:1357–1366CrossRefzbMATHGoogle Scholar
  91. Mayeur JR, McDowell DL (2013) An evaluation of higher-order single crystal strength models for constrained thin films subjected to simple shear. J Mech Phys Solids 61(9):1935–1954CrossRefADSMathSciNetGoogle Scholar
  92. Mayeur JR, McDowell DL (2014) A comparison of Gurtin-type and micropolar single crystal plasticity with generalized stresses. Int J Plast 57:29–51CrossRefGoogle Scholar
  93. Mayeur JR, McDowell DL (2015) Micropolar crystal plasticity simulations of particle strengthening. Model Simul Mater Sci Eng 23(6):065007CrossRefADSGoogle Scholar
  94. Mayeur JR, McDowell DL, Bammann DJ (2011) Dislocation-based micropolar single crystal plasticity: comparison of multi- and single-criterion theories. J Mech Phys Solids 59(2):398–422CrossRefADSMathSciNetzbMATHGoogle Scholar
  95. McDowell DL (2008) Viscoplasticity of heterogeneous metallic materials. Mater Sci Eng R: Rep 62(3):67–123CrossRefGoogle Scholar
  96. McDowell DL (2010) A perspective on trends in multiscale plasticity. Int J Plast 26(9):1280–1309CrossRefzbMATHGoogle Scholar
  97. Mendis BG, Mishin Y, Hartley CS, Hemker KJ (2006) Use of the Nye tensor in analyzing HREM images of bcc screw dislocations. Philos Mag 86(29–31):4607–4640CrossRefADSGoogle Scholar
  98. Miller R, Tadmor EB, Phillips R, Ortiz M (1998a) Quasicontinuum simulation of fracture at the atomic scale. Model Simul Mater Sci Eng 6(5):607–638CrossRefADSGoogle Scholar
  99. Miller R, Ortiz M, Phillips R, Shenoy V, Tadmor EB (1998b) Quasicontinuum models of fracture and plasticity. Eng Fract Mech 61(3–4):427–444CrossRefGoogle Scholar
  100. Monavari M, Sandfeld S, Zaiser M (2016) Continuum representation of systems of dislocation lines: a general method for deriving closed-form evolution equations. J Mech Phys Solids 95:575–601CrossRefADSMathSciNetGoogle Scholar
  101. Nguyen LD, Baker KL, Warner DH (2011) Atomistic predictions of dislocation nucleation with transition state theory. Phys Rev B 84:024118CrossRefADSGoogle Scholar
  102. Nye JF (1953) Some geometrical relations in dislocated crystals. Acta Metall 1:153–162CrossRefGoogle Scholar
  103. Pavia F, Curtin WA (2015) Parallel algorithm for multiscale atomistic/continuum simulations using LAMMPS. Model Simul Mater Sci Eng 23:055002 (23 pp)CrossRefADSGoogle Scholar
  104. Peierls R (1940) The size of a dislocation. Proc Phys Soc Lond 52:34–37CrossRefADSGoogle Scholar
  105. Pluchino PA, Chen X, Garcia M, Xiong L, McDowell DL, Chen Y (2016) Dislocation migration across coherent phase interfaces in SiGe superlattices. Comput Mater Sci 111:1–6CrossRefGoogle Scholar
  106. Qu S, Shastry V, Curtin WA, Miller RE (2005) A finite-temperature dynamic coupled atomistic/discrete dislocation method. Model Simul Mater Sci Eng 13(7):1101–1118CrossRefADSGoogle Scholar
  107. Raabe D, Sachtleber M, Zhao Z, Roters F, Zaefferer S (2001) Micromechanical and macromechanical effects in grain scale polycrystal plasticity experimentation and simulation. Acta Mater 49(17):3433–3441CrossRefGoogle Scholar
  108. Rao SI, Woodward C, Parthasarathy TA, Senkov O (2017) Atomistic simulations of dislocation behavior in a model FCC multicomponent concentrated solid solution alloy. Acta Mater 134:188–194CrossRefGoogle Scholar
  109. Roters F, Eisenlohr P, Hantcherli L, Tjahjanto DD, Bieler TR, Raabe D (2010) Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater 58(4):1152–1211Google Scholar
  110. Roy A, Acharya A (2006) Size effects and idealized dislocation microstructure at small scales: predictions of a phenomenological model of mesoscopic field dislocation mechanics. J Mech Phys Solids 54:1711–1743CrossRefADSMathSciNetzbMATHGoogle Scholar
  111. Roy A, Puri S, Acharya A (2007) Phenomenological mesoscopic dislocation mechanics, lower-order gradient plasticity and transport of mean excess dislocation density. Model Simul Mater Sci Eng 15:S167–S180CrossRefADSGoogle Scholar
  112. Rudd RE, Arsenlis A, Barton NR, Cavallo RM, Comley AJ, Maddox BR, Marian J, Park H-S, Prisbrey ST, Wehrenberg CE, Zepeda-Ruiz L, Remington BA (2014) Multiscale strength (MS) models: their foundation, their successes, and their challenges. In: 18th APS-SCCM and 24th AIRAPT Journal of Physics: Conference Series 500, p 112055Google Scholar
  113. Ryu S, Kang K, Cai W (2011) Predicting the dislocation nucleation rate as a function of temperature and stress. J Mater Res 26(18):2335–2354CrossRefADSGoogle Scholar
  114. Ryu I, Nix WD, Cai W (2013) Plasticity of bcc micropillars controlled by competition between dislocation multiplication and depletion. Acta Mater 61:3233–3241CrossRefGoogle Scholar
  115. Sandfeld S, Hochrainer T, Zaiser M, Gumbsch P (2011) Continuum modeling of dislocation plasticity: theory, numerical implementation and validation by discrete dislocation simulations. J Mater Res 26:623–632CrossRefADSGoogle Scholar
  116. Saroukhani S, Nguyen LD, Leung KWK, Singh CV, Warner DH (2016) Harnessing atomistic simulations to predict the rate at which dislocations overcome obstacles. J Mech Phys Solids 90:203–214CrossRefADSMathSciNetGoogle Scholar
  117. Shahba A, Ghosh S (2016) Crystal plasticity FE modeling of Ti alloys for a range of strain-rates. Part I: a unified constitutive model and flow rule. Int J Plast 87:48–68CrossRefGoogle Scholar
  118. Shen C, Wang Y (2003) Modeling dislocation network and dislocation–precipitate interaction at mesoscopic scale using phase field method. Int J Multiscale Comput Eng 1(1):91–104CrossRefGoogle Scholar
  119. Shen C, Li J, Wang Y (2014) Predicting structure and energy of dislocations and grain boundaries. Acta Mater 74:125–131CrossRefGoogle Scholar
  120. Shenoy VB, Miller R, Tadmor EB, Phillips R, Ortiz M (1998) Quasicontinuum models of interfacial structure and deformation. Phys Rev Lett 80(4):742–745CrossRefADSGoogle Scholar
  121. Shenoy VB, Miller R, Tadmor E, Rodney D, Phillips R, Ortiz M (1999) An adaptive finite element approach to atomic-scale mechanics - the quasicontinuum method. J Mech Phys Solids 47(3):611–642Google Scholar
  122. Shiari B, Miller RE, Curtin WA (2005) Coupled atomistic/discrete dislocation simulations of nanoindentation at finite temperature. ASME J Eng Mater Technol 127(4):358–368CrossRefGoogle Scholar
  123. Shilkrot LE, Curtin WA, Miller RE (2002a) A coupled atomistic/continuum model of defects in solids. J Mech Phys Solids 50:2085–2106CrossRefADSzbMATHGoogle Scholar
  124. Shilkrot LE, Miller RE, Curtin WA (2002b) Coupled atomistic and discrete dislocation plasticity. Phys Rev Lett 89:025501–025501CrossRefADSGoogle Scholar
  125. Shilkrot LE, Miller RE, Curtin WA (2004) Multiscale plasticity modeling: coupled atomistics and discrete dislocation mechanics. J Mech Phys Solids 52:755–787CrossRefADSMathSciNetzbMATHGoogle Scholar
  126. Shimokawa T, Kinari T, Shintaku S (2007) Dislocation-grain boundary interactions by the Quasicontinuum method. Key Eng Mater 340–341:973–978CrossRefGoogle Scholar
  127. Sills RB, Aghaei A, Cai W (2016) Advanced time integration algorithms for dislocation dynamics simulations of work hardening. Model Simul Mater Sci Eng 24:045019 (17 pp)CrossRefADSGoogle Scholar
  128. Tadmor EB, Miller RE (2011) Modeling materials: continuum, atomistic and multiscale techniques. Cambridge University Press, New YorkCrossRefzbMATHGoogle Scholar
  129. Tadmor EB, Ortiz M, Phillips R (1996a) Quasicontinuum analysis of defects in solids. Philos Mag A 73(6):1529–1563CrossRefADSGoogle Scholar
  130. Tadmor EB, Phillips R, Ortiz M (1996b) Mixed atomistic and continuum models of deformation in solids. Langmuir 12(19):4529–4534CrossRefGoogle Scholar
  131. Tang M, Hommes G, Aubry S, Arsenlis A (2011) ParaDiS-FEM dislocation dynamics simulation code primer. LLNL-TR-501662. https://doi.org/10.2172/1037843
  132. Tembhekar I, Amelang JS, Munk L, Kochmann DM (2017) Automatic adaptivity in the fully nonlocal quasicontinuum method for coarse-grained atomistic simulations. Int J Numer Methods Eng 110:878–900CrossRefMathSciNetGoogle Scholar
  133. Van der Giessen E, Needleman A (1995) Discrete dislocation plasticity: a simple planar model. Model Simul Mater Sci Eng 3:689–735Google Scholar
  134. Viatkina EM, Brekelmans WAM, Geers MGD (2007) Modelling of the internal stress in dislocation cell structures. Eur J Mech A Solids 26:982–998CrossRefMathSciNetzbMATHGoogle Scholar
  135. Voyiadjis GZ, Abu Al-Rub RK (2005) Gradient plasticity theory with a variable length scale parameter. Int J Solids Struct 42(14):3998–4029CrossRefzbMATHGoogle Scholar
  136. Wallin M, Curtin WA, Ristinmaa M, Needleman A (2008) Multi-scale plasticity modeling: coupled discrete dislocation and continuum crystal plasticity. J Mech Phys Solids 56:3167–3180CrossRefADSzbMATHGoogle Scholar
  137. Wang Y, Li J (2010) Phase field modeling of defects and deformation. Acta Mater 58(4):1212–1235CrossRefGoogle Scholar
  138. Wang YU, Jin YM, Cuitino AM, Khachaturyan AG (2001) Nanoscale phase field microelasticity theory of dislocations: model and 3D simulations. Acta Mater 49(10):1847–1857CrossRefGoogle Scholar
  139. Wang W, Ghoniem N, Swaminaryan LSR (2006) A parallel algorithm for 3D dislocation dynamics. J Comput Phys 219:608–621CrossRefADSMathSciNetzbMATHGoogle Scholar
  140. Xia S, El-Azab A (2015) Computational modelling of mesoscale dislocation patterning and plastic deformation of single crystals. Model Simul Mater Sci Eng 23(5):55009–55034CrossRefADSGoogle Scholar
  141. Xia S, Belak J, El-Azab A (2016) The discrete-continuum connection in dislocation dynamics: I. Time coarse graining of cross slip. Modell Simul Mater Sci Eng 24:075007 (22pp)CrossRefADSGoogle Scholar
  142. Xiong L, Tucker GJ, McDowell DL, Chen Y (2011) Coarse-grained atomistic simulation of dislocations. J Mech Phys Solids 59:160–177CrossRefADSzbMATHGoogle Scholar
  143. Xiong L, Deng Q, Tucker GJ, McDowell DL, Chen Y (2012a) A concurrent scheme for passing dislocations from atomistic to continuum regions. Acta Mater 60(3):899–913CrossRefGoogle Scholar
  144. Xiong L, Deng Q, Tucker GJ, McDowell DL, Chen Y (2012b) Coarse-grained atomistic simulations of dislocations in Al, Ni and Cu crystals. Int J Plast 38:86–101CrossRefGoogle Scholar
  145. Xiong L, McDowell DL, Chen Y (2014a) Sub-THz phonon drag on dislocations by coarse-grained atomistic simulations. Int J Plast 55:268–278CrossRefGoogle Scholar
  146. Xiong L, Chen X, McDowell DL, Chen Y (2014b) Predicting phonon properties of 1D polyatomic crystals through the concurrent atomistic-continuum simulations. Arch Appl Mech (special issue in honor of Professor G. Maugin) 84:1665–1675Google Scholar
  147. Xiong L, Xu S, McDowell DL, Chen Y (2015) Concurrent atomistic-continuum simulations of dislocation-void interactions in fcc crystals. Int J Plast 65:33–42CrossRefGoogle Scholar
  148. Xu S, Che R, Xiong L, Chen Y, McDowell DL (2015) A quasistatic implementation of the concurrent atomistic-continuum method for FCC crystals. Int J Plast 72:91–126CrossRefGoogle Scholar
  149. Xu S, Xiong L, Chen Y, McDowell DL (2016) Sequential slip transfer of mixed character dislocations across Σ3 coherent twin boundary in FCC metals: a concurrent atomistic-continuum study. npg Comput Mater 2:15016. https://doi.org/10.1038/npjcompumats.2015.16
  150. Xu S, Xiong L, Chen Y, McDowell DL (2017) Comparing EAM potentials to model slip transfer of sequential mixed character dislocations across two symmetric tilt grain boundaries in Ni. JOM 69(5):814–821CrossRefADSGoogle Scholar
  151. Yasin H, Zbib HM, Khaleel MA (2001) Size and boundary effects in discrete dislocation dynamics: coupling with continuum finite element. Mater Sci Eng A 309–310:294–299CrossRefGoogle Scholar
  152. Yin J, Barnett DM, Fitzgerald SP, Cai W (2012) Computing dislocation stress fields in anisotropic elastic media using fast multipole expansions. Model Simul Mater Sci Eng 20:045015CrossRefADSGoogle Scholar
  153. Yu W, Wang Z (2012) Interactions between edge lattice dislocations and Σ11 symmetrical tilt grain boundaries in copper: a quasi-continuum method study. Acta Mater 60(13–14):5010–5021CrossRefGoogle Scholar
  154. Yu WS, Wang ZQ (2014) Interactions between edge lattice dislocations and sigma 11 symmetrical tilt grain boundary: comparisons among several FCC metals and interatomic potentials. Philos Mag 94:2224–2246CrossRefADSGoogle Scholar
  155. Zaiser M (2001) Statistical modeling of dislocation systems. Mater Sci Eng A 309-310:304–315CrossRefGoogle Scholar
  156. Zbib HM, Diaz de la Rubia T (2002) A multiscale model of plasticity. Int J Plast 18(9):1133–1163Google Scholar
  157. Zbib HM, Rhee M, Hirth JP (1998) On plastic deformation and the dynamics of 3D dislocations. Int J Mech Sci 40(2):113–127CrossRefzbMATHGoogle Scholar
  158. Zbib HM, Diaz de la Rubia T, Bulatov V (2002) A multiscale model of plasticity based on discrete dislocation dynamics. ASME J Eng Mater Technol 124(1):78–87Google Scholar
  159. Zbib HM, Overman CT, Akasheh F, Bahr D (2011) Analysis of plastic deformation in nanoscale metallic multilayers with coherent and incoherent interfaces. Int J Plast 27:1618–1639CrossRefzbMATHGoogle Scholar
  160. Zhang X (2015) Field dislocation mechanics with applications in atomic, mesoscopic and tectonic scale problems. Dissertations, Carnegie Mellon University Paper 585. http://repository.cmu.edu/cgi/viewcontent.cgi?article=1624&context=dissertations

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Woodruff School of Mechanical Engineering, School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA

Section editors and affiliations

  • Wei Cai
    • 1
  • Somnath Ghosh
    • 2
  1. 1.Department of Mechanical EngineeringStanford UniversityStanfordUSA
  2. 2.Dept. of Mechanical EngineeringJohns Hopkins UniveristyBaltimoreUSA

Personalised recommendations