Advertisement

The Stochastic Nature of Deformation Twinning: Application to HCP Materials

  • Irene J. BeyerleinEmail author
  • M. Arul Kumar
Reference work entry
  • 46 Downloads

Abstract

Deformation twinning is an important mode of plastic deformation in hexagonal close-packed (HCP) materials. Experimental observations indicate that these twins occur heterogeneously across the polycrystalline microstructure during deformation. The variation is too substantial to be authentically represented by average values, advocating the use of statistical analyses and stochastic models in the studies of HCP material deformation response. This chapter reviews recent efforts to explain the origin of the stochastic nature of twinning and to analyze and simulate deformation twinning in HCP materials from this perspective.

Notes

Acknowledgments

I.J.B. acknowledges financial support from the National Science Foundation Designing Materials to Revolutionize and Engineer our Future (DMREF) program (NSF CMMI-1729887). M.A.K. acknowledges financial support from US Department of Energy, Office of Basic Energy Sciences (OBES) FWP-06SCPE401.

References

  1. Abdolvand H, Daymond M (2013a) Multi-scale modeling and experimental study of twin inception and propagation in hexagonal close-packed materials using a crystal plasticity finite element approach-part I: average behavior. J Mech Phys Solids 61:783–802.  https://doi.org/10.1016/j.jmps.2012.10.013ADSMathSciNetCrossRefGoogle Scholar
  2. Abdolvand H, Daymond M (2013b) Multi-scale modeling and experimental study of twin inception and propagation in hexagonal close-packed materials using a crystal plasticity finite element approach; part II: local behavior. J Mech Phys Solids 61:803–818.  https://doi.org/10.1016/j.jmps.2012.10.017ADSMathSciNetCrossRefGoogle Scholar
  3. Abdolvand H, Wilkinson AJ (2016) Assessment of residual stress fields at deformation twin tips and the surrounding environments. Acta Mater 105:219–231.  https://doi.org/10.1016/j.actamat.2015.11.036CrossRefGoogle Scholar
  4. Abdolvand H, Daymond M, Mareau C (2011) Incorporation of twinning into a crystal plasticity finite element model: evolution of lattice strains and texture in Zircaloy-2. Int J Plast 27:1721–1738.  https://doi.org/10.1016/j.ijplas.2011.04.005CrossRefzbMATHGoogle Scholar
  5. Abdolvand H et al (2015a) On the deformation twinning of Mg AZ31B: a three-dimensional synchrotron X-ray diffraction experiment and crystal plasticity finite element model. Int J Plast 70:77–97.  https://doi.org/10.1016/j.ijplas.2015.03.001CrossRefGoogle Scholar
  6. Abdolvand H, Majkut M, Oddershede J, Wright J, Daymond M (2015b) Study of 3-D stress development in parent and twin pairs of a hexagonal close-packed polycrystal: part I – in-situ three-dimensional synchrotron X-ray diffraction measurement. Acta Mater 93:246–255.  https://doi.org/10.1016/j.actamat.2015.04.020CrossRefGoogle Scholar
  7. Abdolvand H, Wright J, Wilkinson A (2018) Strong grain neighbour effects in polycrystals. Nat Commun 9:171.  https://doi.org/10.1038/s41467-017-02213-9ADSCrossRefGoogle Scholar
  8. Agnew SR, Brown DW, Vogel SC, Holden TM (2002) In-situ measurement of internal strain evolution during deformation dominated by mechanical twinning. In: Ecrs 6: proceedings of the 6th European conference on residual stresses, vol 404-7, pp 747–752.  https://doi.org/10.4028/www.scientific.net/MSF.404-407.747
  9. Akhtar A, Teghtsoo A (1971) Plastic deformation of Zirconium single crystals. Acta Metall Mater 19:655–663.  https://doi.org/10.1016/0001-6160(71)90019-8CrossRefGoogle Scholar
  10. Ardeljan M, McCabe RJ, Beyerlein IJ, Knezevic M (2015) Explicit incorporation of deformation twins into crystal plasticity finite element models. Comput Methods Appl Mech 295:396–413.  https://doi.org/10.1016/j.cma.2015.07.003MathSciNetCrossRefzbMATHGoogle Scholar
  11. Ardeljan M, Beyerlein I, McWilliams B, Knezevic M (2016) Strain rate and temperature sensitive multi-level crystal plasticity model for large plastic deformation behavior: application to AZ31 magnesium alloy. Int J Plast 83:90–109.  https://doi.org/10.1016/j.ijplas.2016.04.005CrossRefGoogle Scholar
  12. Asaro RJ (1983) Micromechanics of crystals and polycrystals. Adv Appl Mech 23:1–115.  https://doi.org/10.1016/S0065-2156(08)70242-4CrossRefGoogle Scholar
  13. Asaro RJ, Lubarda VA (2006) Mechanics of solids and materials. Cambridge University Press, Cambridge/New YorkCrossRefGoogle Scholar
  14. Barnett MR (2007a) Twinning and the ductility of magnesium alloys part I: “Tension” twins. Mater Sci Eng A-Struct 464:1–7.  https://doi.org/10.1016/j.msea.2006.12.037CrossRefGoogle Scholar
  15. Barnett MR (2007b) Twinning and the ductility of magnesium alloys part II. “Contraction” twins. Mater Sci Eng A-Struct 464:8–16.  https://doi.org/10.1016/j.msea.2007.02.109CrossRefGoogle Scholar
  16. Barnett MR, Keshavarz Z, Beer AG, Atwell D (2004) Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn. Acta Mater 52:5093–5103.  https://doi.org/10.1016/j.actamat.2004.07.015CrossRefGoogle Scholar
  17. Barnett MR, Nave MD, Ghaderi A (2012) Yield point elongation due to twinning in a magnesium alloy. Acta Mater 60:1433–1443.  https://doi.org/10.1016/j.actamat.2011.11.022CrossRefGoogle Scholar
  18. Barrett CD, El Kadiri H (2014) The roles of grain boundary dislocations and disclinations in the nucleation of {10(1)over-bar12} twinning. Acta Mater 63:1–15.  https://doi.org/10.1016/j.actamat.2013.09.012CrossRefGoogle Scholar
  19. Bay B, Hansen N, Hughes DA, Kuhlmannwilsdorf D (1992) Overview No-96 – evolution of F.C.C. deformation structures in Polyslip. Acta Metall Mater 40:205–219.  https://doi.org/10.1016/0956-7151(92)90296-QADSCrossRefGoogle Scholar
  20. Beyerlein IJ, Tome CN (2008) A dislocation-based constitutive law for pure Zr including temperature effects. Int J Plast 24:867–895.  https://doi.org/10.1016/j.ijplas.2007.07.017CrossRefzbMATHGoogle Scholar
  21. Beyerlein IJ, Tome CN (2010) A probabilistic twin nucleation model for HCP polycrystalline metals. Proc R Soc A-Math Phys 466:2517–2544.  https://doi.org/10.1098/rspa.2009.0661ADSCrossRefGoogle Scholar
  22. Beyerlein IJ, Capolungo L, Marshall PE, McCabe RJ, Tome CN (2010) Statistical analyses of deformation twinning in magnesium. Philos Mag 90:2161.  https://doi.org/10.1080/14786435.2010.517966. 90:4073-4074. Pii 926495039ADSCrossRefGoogle Scholar
  23. Beyerlein IJ, McCabe RJ, Tome CN (2011) Effect of microstructure on the nucleation of deformation twins in polycrystalline high-purity magnesium: a multi-scale modeling study. J Mech Phys Solids 59:988–1003.  https://doi.org/10.1016/j.jmps.2011.02.007ADSCrossRefGoogle Scholar
  24. Beyerlein IJ, Wang J, Barnett MR, Tome CN (2012) Double twinning mechanisms in magnesium alloys via dissociation of lattice dislocations. Proc R Soc A-Math Phys 468:1496–1520.  https://doi.org/10.1098/rspa.2011.0731ADSCrossRefGoogle Scholar
  25. Beyerlein IJ, Wang J, Kang K, Zheng SJ, Mara NA (2013) Twinnability of bimetal interfaces in nanostructured composites. Mater Res Lett 1:89–95.  https://doi.org/10.1080/21663831.2013.782074CrossRefGoogle Scholar
  26. Beyerlein IJ, Zhang XH, Misra A (2014) Growth twins and deformation twins in metals. Annu Rev Mater Res 44:329–363.  https://doi.org/10.1146/annurev-matsci-070813-113304ADSCrossRefGoogle Scholar
  27. Bieler T, Wang L, Beaudoin A, Kenesei P, Lienert U (2014) In situ characterization of twin nucleation in pure Ti using 3D-XRD. Metall Mater Trans A 45A:109–122.  https://doi.org/10.1007/s11661-013-2082-3ADSCrossRefGoogle Scholar
  28. Brenner R, Lebensohn RA, Castelnau O (2009) Elastic anisotropy and yield surface estimates of polycrystals. Int J Solids Struct 46:3018–3026.  https://doi.org/10.1016/j.ijsolstr.2009.04.001CrossRefzbMATHGoogle Scholar
  29. Bronkhorst CA, Kalidindi SR, Anand L (1992) Polycrystalline plasticity and the evolution of crystallographic texture in FCC metals. Philos Trans R Soc A 341:443–477.  https://doi.org/10.1098/rsta.1992.0111ADSCrossRefGoogle Scholar
  30. Canova GR, Fressengeas C, Molinari A, Kocks UF (1988) Effect of rate sensitivity on slip system activity and lattice rotation. Acta Metall Mater 36:1961–1970.  https://doi.org/10.1016/0001-6160(88)90298-2CrossRefGoogle Scholar
  31. Capolungo L, Beyerlein IJ (2008) Nucleation and stability of twins in hcp metals. Phys Rev B 78:024117.  https://doi.org/10.1103/PhysRevB.78.024117. ARTN 024117ADSCrossRefGoogle Scholar
  32. Capolungo L, Marshall PE, McCabe RJ, Beyerlein IJ, Tome CN (2009) Nucleation and growth of twins in Zr: a statistical study. Acta Mater 57:6047–6056.  https://doi.org/10.1016/j.actamat.2009.08.030CrossRefGoogle Scholar
  33. Cheng JH, Ghosh S (2015) A crystal plasticity FE model for deformation with twin nucleation in magnesium alloys. Int J Plast 67:148–170.  https://doi.org/10.1016/j.ijplas.2014.10.005CrossRefGoogle Scholar
  34. Cheng JH, Ghosh S (2017a) Crystal plasticity finite element modeling of discrete twin evolution in polycrystalline magnesium. J Mech Phys Solids 99:512–538.  https://doi.org/10.1016/j.jmps.2016.12.008ADSMathSciNetCrossRefGoogle Scholar
  35. Cheng JH, Ghosh S (2017b) Simulating discrete twin evolution in magnesium using a novel crystal plasticity finite element model. Miner Met Mater Ser:167–174.  https://doi.org/10.1007/978-3-319-52392-7_26
  36. Clark WAT, Wagoner RH, Shen ZY, Lee TC, Robertson IM, Birnbaum HK (1992) On the criteria for slip transmission across interfaces in polycrystals. Scr Metall Mater 26:203–206.  https://doi.org/10.1016/0956-716x(92)90173-CCrossRefGoogle Scholar
  37. Cohen JB, Weertman J (1963) A dislocation model for twinning in F.C.C. Metals. Acta Metall Mater 11:996.  https://doi.org/10.1016/0001-6160(63)90074-9CrossRefGoogle Scholar
  38. Delannay L, Jacques PJ, Kalidindi SR (2006) Finite element modeling of crystal plasticity with grains shaped as truncated octahedrons. Int J Plast 22:1879–1898.  https://doi.org/10.1016/j.ijplas.2006.01.008CrossRefzbMATHGoogle Scholar
  39. Ecob N, Ralph B (1983) The effect of grain-size on deformation twinning in a textured zinc alloy. J Mater Sci 18:2419–2429.  https://doi.org/10.1007/Bf00541848ADSCrossRefGoogle Scholar
  40. Eisenlohr P, Diehl M, Lebensohn RA, Roters F (2013) A spectral method solution to crystal elasto-viscoplasticity at finite strains. Int J Plast 46:37–53.  https://doi.org/10.1016/j.ijplas.2012.09.012CrossRefGoogle Scholar
  41. Fisher ES, Renken CJ (1964) Single-crystal elastic moduli + hcp to bcc transformation in Ti,Zr, and Hf. Phys Rev 135:A482–A494.  https://doi.org/10.1103/PhysRev.135.A482ADSCrossRefGoogle Scholar
  42. Ghaderi A, Barnett M (2011) Sensitivity of deformation twinning to grain size in titanium and magnesium. Acta Mater 59:7824–7839.  https://doi.org/10.1016/j.actamat.2011.09.018CrossRefGoogle Scholar
  43. Gutierrez-Urrutia I, Raabe D (2012) Grain size effect on strain hardening in twinning-induced plasticity steels. Scr Mater 66:992–996.  https://doi.org/10.1016/j.scriptamat.2012.01.037CrossRefGoogle Scholar
  44. Hazeli K, Cuadra J, Vanniamparambil PA, Kontsos A (2013) In situ identification of twin-related bands near yielding in a magnesium alloy. Scr Mater 68:83–86.  https://doi.org/10.1016/j.scriptamat.2012.09.009CrossRefGoogle Scholar
  45. Hearmon RFS (1946) The elastic constants of anisotropic materials. Rev Mod Phys 18:409–440.  https://doi.org/10.1103/RevModPhys.18.409ADSCrossRefGoogle Scholar
  46. Hosford WF (1993) The mechanics of crystals and textured polycrystals. The Oxford engineering science series, vol 32. Oxford University Press, New YorkGoogle Scholar
  47. Hughes DA, Hansen N (1997) High angle boundaries formed by grain subdivision mechanisms. Acta Mater 45:3871–3886.  https://doi.org/10.1016/S1359-6454(97)00027-XCrossRefGoogle Scholar
  48. Idiart MI, Moulinec H, Castaneda PP, Suquet P (2006) Macroscopic behavior and field fluctuations in viscoplastic composites: second-order estimates versus full-field simulations. J Mech Phys Solids 54:1029–1063.  https://doi.org/10.1016/j.jmps.2005.11.004ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. Jagannadham K (1976) Lattice dislocation near a surface. J Appl Phys 47:4401–4403.  https://doi.org/10.1063/1.322445ADSCrossRefGoogle Scholar
  50. Jain A, Duygulu O, Brown DW, Tome CN, Agnew SR (2008) Grain size effects on the tensile properties and deformation mechanisms of a magnesium alloy, AZ31B, sheet. Mat Sci Eng A-Struct 486:545–555.  https://doi.org/10.1016/j.msea.2007.09.069CrossRefGoogle Scholar
  51. Juan PA, Pradalier C, Berbenni S, McCabe RJ, Tome CN, Capolungo L (2015) A statistical analysis of the influence of microstructure and twin-twin junctions on twin nucleation and twin growth in Zr. Acta Mater 95:399–410.  https://doi.org/10.1016/j.actamat.2015.05.022CrossRefGoogle Scholar
  52. Kacher J, Minor AM (2014) Twin boundary interactions with grain boundaries investigated in pure rhenium. Acta Mater 81:1–8.  https://doi.org/10.1016/j.actamat.2014.08.013CrossRefGoogle Scholar
  53. Kalidindi SR (1998) Incorporation of deformation twinning in crystal plasticity models. J Mech Phys Solids 46:267–290.  https://doi.org/10.1016/S0022-5096(97)00051-3ADSCrossRefzbMATHGoogle Scholar
  54. Kang S, Jung JG, Kang M, Woo W, Lee YK (2016) The effects of grain size on yielding, strain hardening, and mechanical twinning in Fe-18Mn-0.6C-1.5Al twinning-induced plasticity steel. Mat Sci Eng A-Struct 652:212–220.  https://doi.org/10.1016/j.msea.2015.11.096CrossRefGoogle Scholar
  55. Kanjarla AK, Beyerlein IJ, Lebensohn RA, Tome CN (2012a) On the role of local grain interactions on twin nucleation and texture evolution in hexagonal materials. Mater Sci Forum 702-703:265–268.  https://doi.org/10.4028/www.scientific.net/MSF.702-703.265CrossRefGoogle Scholar
  56. Kanjarla AK, Lebensohn RA, Balogh L, Tome CN (2012b) Study of internal lattice strain distributions in stainless steel using a full-field elasto-viscoplastic formulation based on fast Fourier transforms. Acta Mater 60:3094–3106.  https://doi.org/10.1016/j.actamat.2012.02.014CrossRefGoogle Scholar
  57. Kaschner GC, Tome CN, Beyerlein IJ, Vogel SC, Brown DW, McCabe RJ (2006) Role of twinning in the hardening response of zirconium during temperature reloads. Acta Mater 54:2887–2896.  https://doi.org/10.1016/j.actamat.2006.02.036CrossRefGoogle Scholar
  58. Khosravani A, Fullwood DT, Adams BL, Rampton TM, Miles MP, Mishra RK (2015) Nucleation and propagation of {1 0(1)over-bar2} twins in AZ31 magnesium alloy. Acta Mater 100:202–214.  https://doi.org/10.1016/j.actamat.2015.08.024CrossRefGoogle Scholar
  59. Knezevic M, Zecevic M, Beyerlein I, Bingert J, McCabe R (2015) Strain rate and temperature effects on the selection of primary and secondary slip and twinning systems in HCP Zr. Acta Mater 88:55–73.  https://doi.org/10.1016/j.actamat.2015.01.037CrossRefGoogle Scholar
  60. Knezevic M, Zecevic M, Beyerlein I, Lebensohn R (2016) A numerical procedure enabling accurate descriptions of strain rate-sensitive flow of polycrystals within crystal visco-plasticity theory. Comput Method Appl Mech 308:468–482.  https://doi.org/10.1016/j.cma.2016.05.025MathSciNetCrossRefGoogle Scholar
  61. Kocks UF (1970) Relation between polycrystal deformation and single-crystal deformation. Metall Trans 1:1121–1143.  https://doi.org/10.1007/Bf02900224CrossRefGoogle Scholar
  62. Kocks UF, Tomé CN, Wenk HR (2000) Texture and anisotropy – preferred orientations in polycrystals and their effect on materials properties. Cambridge University Press, CambridgezbMATHGoogle Scholar
  63. Kuhlmann-Wilsdorf D (1999) Overview no. 131 – “Regular” deformation bands (DBs) and the LEDS hypothesis. Acta Mater 47:1697–1712.  https://doi.org/10.1016/S1359-6454(98)00413-3CrossRefGoogle Scholar
  64. Kuhlman-wilsdorf D, Hansen N (1991) Geometrically necessary, incidental and subgrain boundaries. Scr Metall Mater 25:1557–1562.  https://doi.org/10.1016/0956-716x(91)90451-6CrossRefGoogle Scholar
  65. Kumar MA, Mahesh S (2012) Banding in single crystals during plastic deformation. Int J Plast 36:15–33.  https://doi.org/10.1016/j.ijplas.2012.03.008CrossRefGoogle Scholar
  66. Kumar MA, Kanjarla AK, Niezgoda SR, Lebensohn RA, Tome CN (2015) Numerical study of the stress state of a deformation twin in magnesium. Acta Mater 84:349–358.  https://doi.org/10.1016/j.actamat.2014.10.048CrossRefGoogle Scholar
  67. Kumar MA, Beyerlein IJ, McCabe RJ, Tome CN (2016a) Grain neighbour effects on twin transmission in hexagonal close-packed materials. Nat Commun 7:13826  https://doi.org/10.1038/ncomms13826
  68. Kumar MA, Beyerlein IJ, Tome CN (2016b) Effect of local stress fields on twin characteristics in HCP metals. Acta Mater 116:143–154.  https://doi.org/10.1016/j.actamat.2016.06.042CrossRefGoogle Scholar
  69. Kumar MA, Beyerlein IJ, Tome CN (2016c) Grain size constraints on twin expansion in hexagonal close packed crystals. J Appl Phys 120.  https://doi.org/10.1063/1.4965719. Artn 155105
  70. Kumar MA, Beyerlein IJ, Lebensohn RA, Tome CN (2017a) Modeling the effect of alloying elements in magnesium on deformation twin characteristics. Miner Met Mater Ser:159–165.  https://doi.org/10.1007/978-3-319-52392-7_25
  71. Kumar MA, Beyerlein IJ, Lebensohn RA, Tome CN (2017b) Modeling the effect of neighboring grains on twin growth in HCP polycrystals. Model Simul Mater Sci 25.  https://doi.org/10.1088/1361-651X/aa7bbb. ARTN 064007
  72. Kumar MA, Beyerlein IJ, Lebensohn RA, Tome CN (2017c) Role of alloying elements on twin growth and twin transmission in magnesium alloys. Mat Sci Eng A-Struct 706:295–303.  https://doi.org/10.1016/j.msea.2017.08.084CrossRefGoogle Scholar
  73. Kumar MA, Beyerlein IJ, Tome CN (2017d) A measure of plastic anisotropy for hexagonal close packed metals: application to alloying effects on the formability of Mg. J Alloys Compd 695:1488–1497.  https://doi.org/10.1016/j.jallcom.2016.10.287CrossRefGoogle Scholar
  74. Kumar MA, Wroński M, McCabe RJ, Capolungo L, Wierzbanowski K, Tomé CN (2018) Role of microstructure on twin nucleation and growth in HCP titanium: a statistical study. Acta Mater 148:123–132CrossRefGoogle Scholar
  75. Lebensohn RA (2001) N-site modeling of a 3D viscoplastic polycrystal using fast Fourier transform. Acta Mater 49:2723–2737CrossRefGoogle Scholar
  76. Lebensohn RA, Tome CN (1993) A self-consistent anisotropic approach for the simulation of plastic-deformation and texture development of polycrystals – application to zirconium alloys. Acta Metall Mater 41:2611–2624.  https://doi.org/10.1016/0956-7151(93)90130-KCrossRefGoogle Scholar
  77. Lebensohn RA, Brenner R, Castelnau O, Rollett AD (2008) Orientation image-based micromechanical modelling of subgrain texture evolution in polycrystalline copper. Acta Mater 56:3914–3926.  https://doi.org/10.1016/j.actamat.2008.04.016CrossRefGoogle Scholar
  78. Lebensohn RA, Castañeda PP, Brenner R, Castelnau O (2011a) Full-field vs. homogenization methods to predict microstructure–property relations for polycrystalline materials. In: Ghosh S, Dimiduk D (eds) Computational methods for microstructure-property relationships. Springer, BostonGoogle Scholar
  79. Lebensohn RA, Idiart MI, Castaneda PP, Vincent PG (2011b) Dilatational viscoplasticity of polycrystalline solids with intergranular cavities. Philos Mag 91:3038–3067.  https://doi.org/10.1080/14786435.2011.561811ADSCrossRefGoogle Scholar
  80. Lebensohn RA, Kanjarla AK, Eisenlohr P (2012) An elasto-viscoplastic formulation based on fast Fourier transforms for the prediction of micromechanical fields in polycrystalline materials. Int J Plast 32–33:59–69.  https://doi.org/10.1016/j.ijplas.2011.12.005CrossRefGoogle Scholar
  81. Lentz M, Behringer A, Fahrenson C, Beyerlein IJ, Reimers W (2014) Grain size effects on primary, secondary, and tertiary twin development in Mg-4 wt pct Li (-1 wt pct Al) alloys. Metall Mater Trans A 45a:4737–4741.  https://doi.org/10.1007/s11661-014-2491-yADSCrossRefGoogle Scholar
  82. Lentz M, Klaus M, Beyerlein IJ, Zecevic M, Reimers W, Knezevic M (2015) In situ X-ray diffraction and crystal plasticity modeling of the deformation behavior of extruded Mg-Li-(Al) alloys: an uncommon tension-compression asymmetry. Acta Mater 86:254–268.  https://doi.org/10.1016/j.actamat.2014.12.003CrossRefGoogle Scholar
  83. Lentz M, Risse M, Schaefer N, Reimers W, Beyerlein IJ (2016) Strength and ductility with {10(1)over-bar1} – {10(1)over-bar2} double twinning in a magnesium alloy. Nat Commun 7.  https://doi.org/10.1038/ncomms11068. ARTN 11068
  84. Liu B, Raabe D, Roters F, Eisenlohr P, Lebensohn RA (2010) Comparison of finite element and fast Fourier transform crystal plasticity solvers for texture prediction. Model Simul Mater Sci 18.  https://doi.org/10.1088/0965-0393/18/8/085005. Artn 085005
  85. Liu X, Nuhfer NT, Warren AP, Coffey KR, Rohrer GS, Barmak K (2015) Grain size dependence of the twin length fraction in nanocrystalline Cu thin films via transmission electron microscopy based orientation mapping. J Mater Res 30:528–537.  https://doi.org/10.1557/jmr.2014.393ADSCrossRefGoogle Scholar
  86. Mahajan S, Chin GY (1973) Formation of deformation twins in Fcc crystals. Acta Metall Mater 21:1353–1363.  https://doi.org/10.1016/0001-6160(73)90085-0CrossRefGoogle Scholar
  87. Masson R, Bornert M, Suquet P, Zaoui A (2000) An affine formulation for the prediction of the effective properties of nonlinear composites and polycrystals. J Mech Phys Solids 48:1203–1227.  https://doi.org/10.1016/S0022-5096(99)00071-XADSMathSciNetCrossRefzbMATHGoogle Scholar
  88. McCabe RJ, Proust G, Cerreta EK, Misra A (2009) Quantitative analysis of deformation twinning in zirconium. Int J Plast 25:454–472.  https://doi.org/10.1016/j.ijplas.2008.03.010CrossRefGoogle Scholar
  89. Mendelson S (1972) Dislocation dissociations and dislocation mobility in diamond lattice crystals. J Appl Phys 43:2102.  https://doi.org/10.1063/1.1661460ADSCrossRefGoogle Scholar
  90. Michel J, Moulinec H, Suquet P (2000) A computational method based on augmented Lagrangians and fast Fourier transforms for composites with high contrast. Comput Model Eng Sci 1:79–88MathSciNetGoogle Scholar
  91. Michel J, Moulinec H, Suquet P (2001) A computational scheme for linear and non-linear composites with arbitrary phase contrast. Int J Numer Methods Eng 52:139–158.  https://doi.org/10.1002/nme.275CrossRefGoogle Scholar
  92. Mika D, Dawson P (1999) Polycrystal plasticity modeling of intracrystalline boundary textures. Acta Mater 47:1355–1369.  https://doi.org/10.1016/S1359-6454(98)00386-3CrossRefGoogle Scholar
  93. Morrow BM, Cerreta EK, McCabe RJ, Tome CN (2014a) Toward understanding twin-twin interactions in hcp metals: utilizing multiscale techniques to characterize deformation mechanisms in magnesium. Mater Sci Eng A-Struct 613:365–371.  https://doi.org/10.1016/j.msea.2014.06.062CrossRefGoogle Scholar
  94. Morrow BM, Mccabe RJ, Cerreta EK, Tome CN (2014b) In-situ TEM observation of twinning and detwinning during cyclic loading in Mg. Metall Mater Trans A 45a:36–40.  https://doi.org/10.1007/s11661-013-1765-0ADSCrossRefGoogle Scholar
  95. Morrow BM, McCabe RJ, Cerreta EK, Tome CN (2014c) Observations of the atomic structure of tensile and compressive twin boundaries and twin-twin interactions in zirconium. Metall Mater Trans A 45a:5891–5897.  https://doi.org/10.1007/s11661-014-2481-0ADSCrossRefGoogle Scholar
  96. Moulinec H, Suquet P (1994) A fast numerical method for computing the linear and nonlinear mechanical properties of composites. C R Acad Sci Ser II 318:1417–1423zbMATHGoogle Scholar
  97. Moulinec H, Suquet P (1998) A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput Method Appl Mech 157:69–94.  https://doi.org/10.1016/S0045-7825(97)00218-1MathSciNetCrossRefzbMATHGoogle Scholar
  98. Niezgoda SR, Beyerlein IJ, Kanjarla AK, Tome CN (2013) Introducing grain boundary influenced stochastic effects into constitutive models. Jom-Us 65:419–430.  https://doi.org/10.1007/s11837-012-0550-7CrossRefGoogle Scholar
  99. Niezgoda SR, Kanjarla AK, Beyerlein IJ, Tome CN (2014) Stochastic modeling of twin nucleation in polycrystals: an application in hexagonal close-packed metals. Int J Plast 56:119–138.  https://doi.org/10.1016/j.ijplas.2013.11.005CrossRefGoogle Scholar
  100. Partridge PG (1967) The crystallography and deformation modes of hexagonal close-packed metals. Metall Rev 12:169–194CrossRefGoogle Scholar
  101. Peirce D, Asaro RJ, Needleman A (1982) An analysis of nonuniform and localized deformation in ductile single-crystals. Acta Metall Mater 30:1087–1119.  https://doi.org/10.1016/0001-6160(82)90005-0CrossRefGoogle Scholar
  102. Priestner R, Leslie WC (1965) Nucleation of deformation twins at slip plane intersections in Bcc metals. Philos Mag 11:895–916.  https://doi.org/10.1080/14786436508223953ADSCrossRefGoogle Scholar
  103. Proust G, Tome CN, Kaschner GC (2007) Modeling texture, twinning and hardening evolution during deformation of hexagonal materials. Acta Mater 55:2137–2148.  https://doi.org/10.1016/j.actamat.2006.11.017CrossRefGoogle Scholar
  104. Proust G, Tome CN, Jain A, Agnew SR (2009) Modeling the effect of twinning and detwinning during strain-path changes of magnesium alloy AZ31. Int J Plast 25:861–880.  https://doi.org/10.1016/j.ijplas.2008.05.005CrossRefzbMATHGoogle Scholar
  105. Rahman KM, Vorontsov VA, Dye D (2015) The effect of grain size on the twin initiation stress in a TWIP steel. Acta Mater 89:247–257.  https://doi.org/10.1016/j.actamat.2015.02.008CrossRefGoogle Scholar
  106. Roters F, Eisenlohr P, Hantcherli L, Tjahjanto DD, Bieler TR, Raabe D (2010) Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater 58:1152–1211.  https://doi.org/10.1016/j.actamat.2009.10.058CrossRefGoogle Scholar
  107. Salem AA, Kalidindi SR, Doherty RD, Semiatin SL (2006) Strain hardening due to deformation twinning in alpha-titanium: Mechanisms. Metall Mater Trans A 37a:259–268.  https://doi.org/10.1007/s11661-006-0171-2ADSCrossRefGoogle Scholar
  108. Shanthraj P, Eisenlohr P, Diehl M, Roters F (2015) Numerically robust spectral methods for crystal plasticity simulations of heterogeneous materials. Int J Plast 66:31–45.  https://doi.org/10.1016/j.ijplas.2014.02.006CrossRefGoogle Scholar
  109. Shi ZZ et al (2015a) On the selection of extension twin variants with low Schmid factors in a deformed Mg alloy. Acta Mater 83:17–28.  https://doi.org/10.1016/j.actamat.2014.10.004CrossRefGoogle Scholar
  110. Shi ZZ et al (2015b) Variant selection of twins with low Schmid factors in cross grain boundary twin pairs in a magnesium alloy. Iop Conf Ser-Mat Sci 82.  https://doi.org/10.1088/1757-899x/82/1/012021. Artn 012021
  111. Shi ZZ et al (2015c) Sequential double extension twinning in a magnesium alloy: combined statistical and micromechanical analyses. Acta Mater 96:333–343.  https://doi.org/10.1016/j.actamat.2015.06.029CrossRefGoogle Scholar
  112. Simkin BA, Ng BC, Crimp MA, Bieler TR (2007) Crack opening due to deformation twin shear at grain boundaries in near-gamma TiAl. Intermetallics 15:55–60.  https://doi.org/10.1016/j.intermet.2006.03.005CrossRefGoogle Scholar
  113. Simmons G, Wang H (1971) Single crystal elastic constants and calculated aggregate properties: a handbook. MIT press, Cambridge, MAGoogle Scholar
  114. Stanford N, Barnett MR (2008) Fine grained AZ31 produced by conventional thermo-mechanical processing. J Alloys Compd 466:182–188.  https://doi.org/10.1016/j.jallcom.2007.11.082CrossRefGoogle Scholar
  115. Thorvaldsen A (1993) Grain-growth as a stochastic process. Acta Metall Mater 41:1347–1357.  https://doi.org/10.1016/0956-7151(93)90244-MCrossRefGoogle Scholar
  116. Tome C, Canova GR, Kocks UF, Christodoulou N, Jonas JJ (1984) The relation between macroscopic and microscopic strain-hardening in Fcc polycrystals. Acta Metall Mater 32:1637–1653.  https://doi.org/10.1016/0001-6160(84)90222-0CrossRefGoogle Scholar
  117. Tome C, Lebensohn R, Kocks U (1991) A model for texture development dominated by deformation twinning – application to zirconium alloys. Acta Metall Mater 39:2667–2680.  https://doi.org/10.1016/0956-7151(91)90083-DCrossRefGoogle Scholar
  118. Tsai MS, Chang CP (2013) Grain size effect on deformation twinning in Mg-Al-Zn alloy. Mater Sci Technol-Lond 29:759–763.  https://doi.org/10.1179/1743284713y.0000000237CrossRefGoogle Scholar
  119. Wang H, Wu PD, Wang J, Tome CN (2013a) A crystal plasticity model for hexagonal close packed (HCP) crystals including twinning and de-twinning mechanisms. Int J Plast 49:36–52.  https://doi.org/10.1016/j.ijplas.2013.02.016CrossRefGoogle Scholar
  120. Wang J, Beyerlein IJ, Tome CN (2010a) An atomic and probabilistic perspective on twin nucleation in Mg. Scr Mater 63:741–746.  https://doi.org/10.1016/j.scriptamat.2010.01.047CrossRefGoogle Scholar
  121. Wang J, Beyerlein IJ, Hirth JP, Tome CN (2011) Twinning dislocations on {(1)over-bar011} and {(1)over-bar013} planes in hexagonal close-packed crystals. Acta Mater 59:3990–4001.  https://doi.org/10.1016/j.actamat.2011.03.024CrossRefGoogle Scholar
  122. Wang J, Beyerlein IJ, Hirth JP (2012) Nucleation of elementary {(1)over-bar 0 1 1} and {(1)over-bar 0 1 3} twinning dislocations at a twin boundary in hexagonal close-packed crystals. Model Simul Mater Sci 20:024001.  https://doi.org/10.1088/0965-0393/20/2/024001ADSCrossRefGoogle Scholar
  123. Wang J, Yadav SK, Hirth JP, Tome CN, Beyerlein IJ (2013b) Pure-shuffle nucleation of deformation twins in hexagonal-close-packed metals. Mater Res Lett 1:126–132.  https://doi.org/10.1080/21663831.2013.792019CrossRefGoogle Scholar
  124. Wang J, Beyerlein IJ, Tome CN (2014) Reactions of lattice dislocations with grain boundaries in Mg: implications on the micro scale from atomic-scale calculations. Int J Plast 56:156–172.  https://doi.org/10.1016/j.ijplas.2013.11.009CrossRefGoogle Scholar
  125. Wang L, Yang Y, Eisenlohr P, Bieler TR, Crimp MA, Mason DE (2010b) Twin nucleation by slip transfer across grain boundaries in commercial purity titanium. Metall Mater Trans A 41a:421–430.  https://doi.org/10.1007/s11661-009-0097-6ADSCrossRefGoogle Scholar
  126. Wang LY, Barabash R, Bieler T, Liu WJ, Eisenlohr P (2013c) Study of {1211} twinning in α-Ti by EBSD and Laue microdiffraction. Metall Mater Trans A 44:3664–3674.  https://doi.org/10.1007/s11661-013-1714-yCrossRefGoogle Scholar
  127. Wongwiwat K, Murr LE (1978) Effect of shock pressure, pulse duration, and grain-size on shock-deformation twinning in molybdenum. Mater Sci Eng 35:273–285.  https://doi.org/10.1016/0025-5416(78)90129-5CrossRefGoogle Scholar
  128. Wronski M, Arul Kumar M, Capolungo L, Madec R, Wierzbanowski K, Tome CN (2018) Deformation behavior of CP-titanium: experiment and crystal plasticity modeling. Mater Sci Eng A-Struct 724:289–297Google Scholar
  129. Wu W, Chuang CP, Qiao DX, Ren Y, An K (2016) Investigation of deformation twinning under complex stress states in a rolled magnesium alloy. J Alloys Compd 683:619–633.  https://doi.org/10.1016/j.jallcom.2016.05.144CrossRefGoogle Scholar
  130. Yang F, Yin SM, Li SX, Zhang ZF (2008) Crack initiation mechanism of extruded AZ31 magnesium alloy in the very high cycle fatigue regime. Mater Sci Eng A-Struct 491:131–136.  https://doi.org/10.1016/j.msea.2008.02.003CrossRefGoogle Scholar
  131. Yin SM, Yang F, Yang XM, Wu SD, Li SX, Li GY (2008) The role of twinning-detwinning on fatigue fracture morphology of Mg-3%Al-1%Zn alloy. Mater Sci Eng A-Struct 494:397–400.  https://doi.org/10.1016/j.msea.2008.04.056CrossRefGoogle Scholar
  132. Yoo MH (1981) Slip, twinning, and fracture in hexagonal close-packed metals. Metall Trans A 12:409–418.  https://doi.org/10.1007/Bf02648537CrossRefGoogle Scholar
  133. Yoo MH, Lee JK (1991) Deformation twinning in Hcp metals and alloys. Philos Mag A 63:987–1000.  https://doi.org/10.1080/01418619108213931ADSCrossRefGoogle Scholar
  134. Zecevic M, Knezevic M (2017) Modeling of sheet metal forming based on implicit embedding of the elasto-plastic self-consistent formulation in shell elements: application to cup drawing of AA6022-T4. JOM 69:922–929.  https://doi.org/10.1007/s11837-017-2255-4ADSCrossRefGoogle Scholar
  135. Zhao Z, Kuchnicki S, Radovitzky R, Cultino A (2007) Influence of in-grain mesh resolution on the prediction of deformation textures in fcc polycrystals by crystal plasticity FEM. Acta Mater 55:2361–2373.  https://doi.org/10.1016/j.actamat.2006.11.035CrossRefGoogle Scholar
  136. Zheng SJ, Beyerlein IJ, Wang J, Carpenter JS, Han WZ, Mara NA (2012) Deformation twinning mechanisms from bimetal interfaces as revealed by in situ straining in the TEM. Acta Mater 60:5858–5866.  https://doi.org/10.1016/j.actamat.2012.07.027CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Mechanical Engineering Department, Materials DepartmentUniversity of CaliforniaSanta BarbaraUSA
  2. 2.Materials Science and Technology DivisionLos Alamos National LaboratoryLos AlamosUSA

Section editors and affiliations

  • Ying Chen
    • 1
  • Eric Homer
    • 2
  • Christopher A. Schuh
    • 3
  1. 1.Department of Materials Science and EngineeringRensselaer Polytechnic InstituteTroyUSA
  2. 2.Department of Mechanical EngineeringBingham Young UniversityProvoUSA
  3. 3.Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations