Advertisement

Removal of Hydrocarbons and Other Related Chemicals Via the Rhizosphere of Plants

  • Lázaro Molina
  • Pieter van Dillewijn
  • Estrella Duque
  • Craig Daniels
  • Tino Krell
  • Manuel Espinosa-Urgel
  • María Isabel Ramos-González
  • Sara Rodríguez-Conde
  • Miguel A. Matilla
  • Regina Wittich
  • Juan Luis Ramos
  • Ana Segura
Living reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

Recalcitrant organic toxic chemicals have been accumulating for decades as a consequence of industrial activity. Concerns about environmental contamination have been rising in the last three decades and therefore the need for soil remediation has become a priority. Although physicochemical techniques are currently the most efficient methods being used to remove contaminants, they are very expensive and therefore impractical in many locations. The use of plants in the bioremediation of soils has been proposed as an attractive strategy; however, plants lack the extraordinary biodegradative capabilities of microorganisms. Consequently rhizoremediation, a technology which combines microorganisms that eliminate contaminants in the plant roots which provide nutrients for these microorganisms, has emerged. To design a successful rhizoremediation strategy, microorganisms need to proliferate in the root system, and the bacterial catabolic pathways have to be operative. Recent advances in these aspects, together with some techniques to improve biodegradation in the rhizosphere will be presented in this chapter.

Notes

Acknowledgments

The work by authors was supported by research grants from the Spanish Ministry of Science and Innovation and the Andalusian Regional Government, (Junta de Andalucía). We thank Angela Tate for improving the use of English in the manuscript.

References

  1. Afzal M, Khan QM, Sessitsch A (2014) Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants. Chemosphere 117:232–342.  https://doi.org/10.1016/j.chemosphere.2014.06.078CrossRefPubMedGoogle Scholar
  2. Attila C, Ueda A, Cirillo SLG, Chen W, Wood TK (2008) Pseudomonas aeruginosa PAO1 virulence factors and poplar tree response in the rhizosphere. Microb Biotechnol 1:17–29PubMedGoogle Scholar
  3. Böltner D, Godoy P, Muñoz-Rojas J, Duque E, Moreno-Morillas S, Sánchez L, Ramos JL (2008) Rhizoremediation of lindane by root-colonizing Sphingomonas. Microbial Biotech 1:87–93Google Scholar
  4. Buddrus-Schiemann K, Schmid M, Schreiner K, Welzl G, Hartmann A (2010) Root colonization by Pseudomonas sp. DSMZ 13134 and impact on the indigenous rhizosphere bacterial community of barley. Microb Ecol 60:381–393.  https://doi.org/10.1007/s00248-010-9720-8CrossRefPubMedGoogle Scholar
  5. Bulgarelli D, Rott M, Schlaeppi K, Ver Loren van Themaat E, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E et al (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95.  https://doi.org/10.1038/nature11336CrossRefPubMedGoogle Scholar
  6. Burges A, Alkorta I, Epelde L, Garbisu C (2017) From phytoremediation of soil contaminants to phytomanagement of ecosystem services in metal contaminated sites. Int J Phytoremediation.  https://doi.org/10.1080/15226514.2017.1365340
  7. Burken JG (2004) Uptake and metabolism of organic compounds: green-liver model. In: McCutcheon SD, Schnoor JL (eds) On phytoremediation. Wiley, New York, pp 59–84Google Scholar
  8. Casavant NC, Thompson D, Beattie GA, Phillips GJ, Halverson LJ (2003) Use of a site-specific recombination-based biosensor for detecting bioavailable toluene and related compounds on roots. Environ Microbiol 5:238–249CrossRefPubMedGoogle Scholar
  9. Cennerazzo J, de Junet A, Audinot J-N, Leyval C (2017) Dynamics of PAHs and derived organic compounds in a soil-plant mesocosm spiked with 13C-phenanthrene. Chemosphere 168:1619–1627CrossRefPubMedGoogle Scholar
  10. Choudhary KS, Hudaiberdiev S, Gelencser Z, Goncalves Coutinho B, Venturi V, Pongor S (2013) The organization of the quorum sensing luxI/R family genes in Burkholderia. Int J Mol Sci 14:13727–13747.  https://doi.org/10.3390/ijms140713727CrossRefPubMedPubMedCentralGoogle Scholar
  11. Colleran E (1997) Uses of bacteria in bioremediation. In: Sheehan D (ed) Methods in biotechnology, vol 2: bioremediation protocols. Humana Press Inc., TotowaGoogle Scholar
  12. Diplock EE, Alhadrami HA, Paton GI (2010) Application of microbial bioreporters in environmental microbiology and bioremediation. Adv Biochem Eng Biotechnol 118:189–209PubMedGoogle Scholar
  13. Dos Santos JJ, Maranho LT (2018) Rhizospheric microorganisms as a solution for the recovery of soils contaminated by petroleum: a review. J Environ Manage 210:104–113.  https://doi.org/10.1016/j.jenvman.2018.01.015CrossRefPubMedGoogle Scholar
  14. Duetz WA, Marqués S, Wind B, Ramos JL, van Andel JG (1996) Catabolite repression of the toluene degradation pathway in Pseudomonas putida harboring pWW0 under various conditions of nutrient limitation in chemostat culture. Appl Environ Microbiol 62:601–606PubMedPubMedCentralGoogle Scholar
  15. Dupuy J, Leglize P, Vincent Q, Zelko I, Mustin C, Ouvrard S, Sterckeman T (2016) Effect and localization of phenanthrene in maize roots. Chemosphere 149:130–136CrossRefPubMedGoogle Scholar
  16. Fuqua C (2006) The QscR quorum-sensing regulon of Pseudomonas aeruginosa: an orphan claims its identity. J Bacteriol 188:3169–3171.  https://doi.org/10.1128/JB.188.9.3169-3171.2006CrossRefPubMedPubMedCentralGoogle Scholar
  17. Fuqua C, Greenberg EP (2002) Listening in on bacteria: acyl-homoserine lactone signalling. Nat Rev Mol Cell Biol 3:685–695.  https://doi.org/10.1038/nrm907CrossRefPubMedGoogle Scholar
  18. Gómez-Sagasti MT, Epelde L, Alkorta I, Garbisu C (2016) Reflections on soil contamination research from a biologist’s point of view. Appl Soil Ecol 105:207–210.  https://doi.org/10.1016/j.apsoil.2016.04.004CrossRefGoogle Scholar
  19. Gonzalez JF, Venturi V (2013) A novel widespread interkingdom signaling circuit. Trends Plant Sci 18:167–174.  https://doi.org/10.1016/j.tplants.2012.09.007CrossRefPubMedGoogle Scholar
  20. Hernández-Sánchez V, Molina L, Ramos JL, Segura A (2016) New family of biosensors for monitoring BTX in aquatic and edaphic environments. Microb Biotechnol 9:858–867.  https://doi.org/10.1111/1751-7915.12394CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kappell AD, Wei Y, Newton RJ, Van Nostrand JD, Zhou J, McLellan SL, Hristova KR (2014) The polycyclic aromatic hydrocarbon degradation potential of Gulf of Mexico native coastal microbial communities after the Deepwater Horizon oil spill. Front Microbiol 5:205.  https://doi.org/10.3389/fmicb.2014.00205CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kohlmeier S, Mancuso M, Deepthike U, Tecon R, van der Meer JR, Harms H, Wells M (2008) Comparison of naphthalene bioavailability determined by whole-cell biosensing and availability determined by extraction with Tenax. Environ Pollut 156:803–808.  https://doi.org/10.1016/j.envpol.2008.06.001CrossRefPubMedGoogle Scholar
  23. Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ (2004a) Rhizoremediation: a beneficial plant–microbe interaction. Mol Plant Microbe Interact 17:6–15CrossRefPubMedGoogle Scholar
  24. Kuiper I, Lagendijk EL, Pickford R, Derrick JP, Lamers GEM, Thomas-Oates JE, Lugtenberg BJJ, Bloember GV (2004b) Characterization of two Pseudomonas putida lipopeptide biosurfactants, putisolvin I and II, which inhibit biofilm formation and breakdown existing biofilms. Mol Microbiol 51:97–113CrossRefPubMedGoogle Scholar
  25. Liduino VS, Servulo EFC, Oliveira FJS (2018) Biosurfactant-assisted phytoremediation of multi-contaminated industrial soil using sunflower (Helianthus annuus L.). J Environ Sci Health A Tox Hazard Subst Environ Eng 1:1–8.  https://doi.org/10.1080/10934529.2018.1429726CrossRefGoogle Scholar
  26. Limmer M, Burken J (2016) Phytovolatilization of organic contaminants. Environ Sci Technol 50:6632–6643.  https://doi.org/10.1021/acs.est.5b04113CrossRefPubMedGoogle Scholar
  27. Liu J, Xiang Y, Zhang Z, Ling W, Gao Y (2017) Inoculation of a phenanthrene-degrading endophytic bacterium reduces the phenanthrene level and alters the bacterial community structure in wheat. Appl Microbiol Biotechnol 101:5199–5212.  https://doi.org/10.1007/s00253-017-8247-zCrossRefPubMedGoogle Scholar
  28. Lu XY, Zhang T, Fang HH (2011) Bacteria-mediated PAH degradation in soil and sediment. Appl Microbiol Biotechnol 89:1357–1371.  https://doi.org/10.1007/s00253-010-3072-7CrossRefPubMedGoogle Scholar
  29. Lu H, Sun J, Zhu L (2017) The role of artificial root exudate components in facilitating the degradation of pyrene in soil. Sci Rep 7:7130.  https://doi.org/10.1038/s41598-017-07413-3CrossRefPubMedPubMedCentralGoogle Scholar
  30. Lugtenberg BJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490CrossRefPubMedGoogle Scholar
  31. Macek T, Mackova M, Kas J (2000) Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Adv 18:23–34CrossRefPubMedGoogle Scholar
  32. Marchant R, Banat IM (2012) Biosurfactants: a sustainable replacement for chemical surfactants? Biotechnol Lett 34:1597–1605.  https://doi.org/10.1007/s10529-012-0956-xCrossRefPubMedGoogle Scholar
  33. Mastretta C, Barac T, Vangronsveld J, Newman L, Taghavi S, Van der Lelie D (2006) Endophytic bacteria and their potential application to improve the phytoremediation of contaminated environments. Biotechnol Genet Eng Rev 23:175–207CrossRefPubMedGoogle Scholar
  34. Matilla MA, Espinosa-Urgel M, Rodríguez-Hervá JJ, Ramos JL, Ramos-González MI (2007) Genomic analysis reveals the major driving forces of bacterial life in the rhizosphere. Genome Biol 8:R179CrossRefPubMedPubMedCentralGoogle Scholar
  35. Olson PE, Castro A, Joern M, DuTeau NM, Pilon SEAH, Reardon KF (2007) Comparison of plant families in a greenhouse phytoremediation study on an aged polycyclic aromatic hydrocarbon contaminated soil. J Environ Qual 36:1461–1469CrossRefPubMedGoogle Scholar
  36. Ortega-Calvo JJ, Tejeda-Agredano MC, Jimenez-Sanchez C, Congiu E, Sungthong R, Niqui-Arroyo JL, Cantos M (2013) Is it possible to increase bioavailability but not environmental risk of PAHs in bioremediation? J Hazard Mater 261:733–745.  https://doi.org/10.1016/j.jhazmat.2013.03.042CrossRefPubMedGoogle Scholar
  37. Radwan S, Sorkhoh N, El-Nemr I (1995) Oil biodegradation around roots. Nature 376:302CrossRefPubMedGoogle Scholar
  38. Rainey PB, Preston GM (2000) In vivo expression technology strategies: valuable tools for biotechnology. Curr Opin Biotechnol 11:440–444CrossRefPubMedGoogle Scholar
  39. Ramos C, Molina L, Mølbak L, Ramos JL, Molin S (2000) A bioluminescent derivative of Pseudomonas putida KT2440 for deliberate release into the environment. FEMS Microbiol Ecol 34:91–102CrossRefPubMedGoogle Scholar
  40. Ramos-González MI, Campos MJ, Ramos JL (2005) Analysis of Pseudomonas putida KT2440 gene expression in the maize rhizosphere: in vivo expression technology capture and identification of root activated promoters. J Bacteriol 187:4033–4041CrossRefPubMedPubMedCentralGoogle Scholar
  41. Rentz JA, Alvarez PJJ, Schnoor JL (2004) Repression of Pseudomonas putida phenanthrene-degrading activity by plant root extracts and exudates. Environ Microbiol 6:574–583CrossRefPubMedGoogle Scholar
  42. Rodriguez-Conde S, Molina L, González P, García-Puente A, Segura A (2016) Degradation of phenanthrene by Novosphingobium sp. HS2a improved plant growth in PAHs-contaminated environments. Appl Microbiol Biotechnol 100:10627–10636CrossRefPubMedGoogle Scholar
  43. Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668CrossRefPubMedPubMedCentralGoogle Scholar
  44. Scharf BE, Hynes MF, Alexandre GM (2016) Chemotaxis signaling systems in model beneficial plant-bacteria associations. Plant Mol Biol 90:549–559.  https://doi.org/10.1007/s11103-016-0432-4CrossRefPubMedGoogle Scholar
  45. Segura A, Ramos JL (2013) Plant–bacteria interactions in the removal of pollutants. Curr Opin Biotechnol 24:467–473.  https://doi.org/10.1016/j.copbio.2012.09.011CrossRefPubMedGoogle Scholar
  46. Segura A, Hernández-Sánchez V, Marqués S, Molina L (2017) Insights in the regulation of the degradation of PAHs in Novosphingobium sp. HR1a and utilization of this regulatory system as a tool for the detection of PAHs. Sci Total Environ 590–591:381–393.  https://doi.org/10.1016/j.scitotenv.2017.02.180CrossRefPubMedGoogle Scholar
  47. Sevilla E, Yuste L, Rojo F (2015) Marine hydrocarbonoclastic bacteria as whole-cell biosensors for n-alkanes. Microb Biotechnol 8:693–706.  https://doi.org/10.1111/1751-7915.12286CrossRefPubMedPubMedCentralGoogle Scholar
  48. Shaw LJ, Burns RG (2003) Biodegradation of organic pollutants in the rhizosphere. Adv Appl Microbiol 53:1–60CrossRefPubMedGoogle Scholar
  49. Siciliano SD, Fortin N, Mihoc A, Wisse G, Labelle X, Beaumier D, Ouellette D, Roy R, Whyte LG, Banks MK, Schwab P, Lee K, Greer CW (2002) Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Appl Environ Microbiol 67:2469–2475CrossRefGoogle Scholar
  50. Siciliano SD, Germida JJ, Banks K, Greer CW (2003) Changes in microbial community composition and function during a polyaromatic hydrocarbon phytoremediation field trial. Appl Environ Microbiol 69:483–489CrossRefPubMedPubMedCentralGoogle Scholar
  51. Singer AC, Crowley DE, Thompson IP (2003) Secondary plant metabolites in phytoremediation and biotransformation. Trends Biotechnol 21:123–130CrossRefPubMedGoogle Scholar
  52. Stevens AM, Greenberg EP (1997) Quorum sensing in Vibrio fischeri: essential elements for activation of the luminescence genes. J Bacteriol 179:557–562CrossRefPubMedPubMedCentralGoogle Scholar
  53. Subramoni S, Venturi V (2009) LuxR-family ‘solos’: bachelor sensors/regulators of signaling molecules. Microbiology 155:1377–1385.  https://doi.org/10.1099/mic.0.026849-0CrossRefPubMedGoogle Scholar
  54. Taghavi S, Barac T, Greenberg B, Borremans B, Vangronsveld J, van der Lelie D (2005) Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Appl Environ Microbiol 71:8500–8505CrossRefPubMedPubMedCentralGoogle Scholar
  55. Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N, Barac T, Vangronsveld J, van der Lelie D (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 75:748–757.  https://doi.org/10.1128/AEM.02239-08CrossRefPubMedGoogle Scholar
  56. Tecon R, Van der Meer JR (2008) Bacterial biosensors for measuring availability of environmental pollutants. Sensors 8:4062–4080CrossRefPubMedGoogle Scholar
  57. Thijs S, Sillen W, Rineau F, Weyens N, Vangronsveld J (2016) Towards an enhanced understanding of plant–microbiome interactions to improve phytoremediation: engineering the metaorganism. Front Microbiol 7:341.  https://doi.org/10.3389/fmicb.2016.00341CrossRefPubMedPubMedCentralGoogle Scholar
  58. Uhlik O, Wald J, Strejcek M, Musilova L, Ridl J, Hroudova M, Vlcek C, Cardenas E, Mackova M, Macek T (2012) Identification of bacteria utilizing biphenyl, benzoate, and naphthalene in long-term contaminated soil. PLoS One 7(7):e40653.  https://doi.org/10.1371/journal.pone.0040653CrossRefPubMedPubMedCentralGoogle Scholar
  59. Van Dillewijn P, Caballero A, Paz JA, González-Pérez MM, Oliva JM, Ramos JL (2007) Bioremediation of 2,4,6-trinitrotoluene under field conditions. Environ Sci Technol 41:1378–1383CrossRefPubMedGoogle Scholar
  60. Venturi V, Keel C (2016) Signaling in the rhizosphere. Trends Plant Sci 21:187–198.  https://doi.org/10.1016/j.tplants.2016.01.005CrossRefPubMedGoogle Scholar
  61. Vergani L, Mapelli F, Zanardini E, Terzaghi E, Di Guardo A, Morosini C, Raspa G, Borin S (2017) Phyto-rhizoremediation of polychlorinated biphenyl contaminated soils: an outlook on plant-microbe beneficial interactions. Sci Total Environ 575:1395–1406.  https://doi.org/10.1016/j.scitotenv.2016.09.218CrossRefPubMedGoogle Scholar
  62. Zafra G, Absalón ÁE, Anducho-Reyes MÁ, Fernandez FJ, Cortés-Espinosa DV (2017) Construction of PAH-degrading mixed microbial consortia by induced selection in soil. Chemosphere 172:120–126.  https://doi.org/10.1016/j.chemosphere.2016.12.038CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Lázaro Molina
    • 1
  • Pieter van Dillewijn
    • 1
  • Estrella Duque
    • 1
  • Craig Daniels
    • 1
    • 2
  • Tino Krell
    • 1
  • Manuel Espinosa-Urgel
    • 1
  • María Isabel Ramos-González
    • 1
  • Sara Rodríguez-Conde
    • 1
  • Miguel A. Matilla
    • 1
  • Regina Wittich
    • 1
  • Juan Luis Ramos
    • 1
  • Ana Segura
    • 1
  1. 1.Department of Environmental ProtectionEstación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranadaSpain
  2. 2.Developmental and Stem Cell Biology Program, Brain Tumour Research CentreThe Hospital for Sick ChildrenTorontoCanada

Personalised recommendations