Diabetes and the Kidney

  • Anna SoliniEmail author
  • Pietro Castellino
Reference work entry
Part of the Endocrinology book series (ENDOCR)


Diabetic renal disease reppresents the first cause of chronic renal disease in industrialized countries. The incidence in developing countries is also increasing. The natural hystory of renal disease in diabetes was first described in type 1 patients and is carachterized by proteinuria and a declining GFR. Retinal disease is also present. In recent years, the natural hystory of the disease has changed with an high incidence of non proteinuric and non progressing courses of the disease. In recent years, new therapeutic agents have beeen introduced with very promising clinical outcome both for renal disease progression and cardiovascular outcome.


Albuminuria-centric model Aliskiren Arteriosclerosis Atherosclerosis Chronic kidney disease (CKD) Diabetic kidney disease Enalapril Glomerular filtration rate (GFR) Glycosuria Hyperglycemia Incretins Metformin Microalbuminuria Non-albuminuric renal impairment Olmesartan Proteinuria Ramipril Renal disease Renin-angiotensin system (RAS) Retinopathy SGLT inhibitors Thiazolidinediones (TDZs) Trandolapril 


  1. ACE inhibitor in diabetic nephropathy trialist group. Should all patients with type 1 diabetes mellitus and microalbuminuria receive angiotensin converting enzyme inhibitors? A meta analysis of individual patient data Ann Intern Med. 2001;134:370–9.Google Scholar
  2. Adler AI, Stevens RJ, Manley SE, et al. UKPDS GROUP. Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int. 2003;63(1):225–32.CrossRefGoogle Scholar
  3. American Diabetes Association. Standards of medical Care in Diabetes-2016: summary of revisions. Diabetes Care. 2016;39(Suppl 1):S4–5.Google Scholar
  4. Anders HJ, Davis JM, Thurau K. Nephron protection in diabetic kidney disease. New Engl J Med. 2016;375:2096–8.CrossRefGoogle Scholar
  5. Barnett AH, Bain SC, Bouter P, et al. Angiotensin-receptor blockade versus converting–enzyme inhibition in type 2 diabetes and nephropathy. N Engl J Med. 2004;351:1952–61.CrossRefGoogle Scholar
  6. Bello AK, Hemmelgarn B, Lloyd A, et al. Associations among estimated glomerular filtration rate, proteinuria, and adverse cardiovascular outcomes. Clin J Am Soc Nephrol. 2011;6(6):1418–26.CrossRefGoogle Scholar
  7. Bertani T, Gambara V, Remuzzi G. Structural basis of diabetic nephropathy in microalbuminuric NIDDM patients: a light microscopy study. Diabetologia. 1996;39(12):1625–8.CrossRefGoogle Scholar
  8. Brenner BM, Cooper ME, de Zeeuw D, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345:861–9.CrossRefGoogle Scholar
  9. Bruno RM, Salvati A, Barzacchi M, et al. Predictive value of dynamic renal resistive index (DRIN) for renal outcome in type 2 diabetes and essential hypertension: a prospective study. Cardiovasc Diabetol. 2014;14:63.CrossRefGoogle Scholar
  10. Chen SC, Chang JM, Liu WC, et al. Stepwise increases in left ventricular mass index and decreases in left ventricular ejection fraction correspond with the stages of chronic kidney disease in diabetes patients. Exp Diabetes Res. 2012;2012:789325.PubMedGoogle Scholar
  11. Cherney DZ, Perkins BA, Soleymanlou N, et al. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation. 2014;129:587–97.CrossRefGoogle Scholar
  12. Czock D, Aisenpreis U, Rasche FM, et al. Pharmacokinetics and pharmacodynamics of lispro-insulin in hemodialysis patients with diabetes mellitus. Int J Clin Pharmacol Ther. 2003;41(10):492–7.CrossRefGoogle Scholar
  13. De Boer IH, Rue TC, Hall YN, et al. Temporal trends in the prevalence of diabetic kidney disease in the United States. JAMA. 2011;305:2532–9.CrossRefGoogle Scholar
  14. Deacon CF, Lebovitz HE. Comparative review of dipeptidyl peptidase-4 inhibitors and sulphonylureas. Diabetes Obes Metab. 2016;18(4):333–47.CrossRefGoogle Scholar
  15. Drury PL, Ting R, Zannino D, et al. Estimated glomerular filtration rate and albuminuria are independent predictors of cardiovascular events and death in type 2 diabetes mellitus: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. Diabetologia. 2011;54(1):32–43.CrossRefGoogle Scholar
  16. Duckworth WC, Kitabchi AE. Insulin metabolism and degradation. Endocr Rev. 1981;2(2):210–33.CrossRefGoogle Scholar
  17. Eriksen BO, Ingebretsen OC. The progression of chronic kidney disease: a 10-year population-based study of the effects of gender and age. Kidney Int. 2006;69(2):375–82.CrossRefGoogle Scholar
  18. Fioretto P, Mauer M, Brocco E, et al. Patterns of renal injury in NIDDM patients with microalbuminuria. Diabetologia. 1996;39(12):1569–76.CrossRefGoogle Scholar
  19. Fioretto P, Steffes MW, Barbosa J, et al. Is diabetic nephropathy inherited? Studies of glomerular structure in type 1 diabetic sibling pairs. Diabetes. 1999;48:865–9.CrossRefGoogle Scholar
  20. Gall MA, Hougaard P, Parving HH. Risk factors for development of incipient and overt diabetic nephropathy in patients with non-insulin dependent diabetes mellitus: prospective, observational study. BMJ. 1997;314(7083):783–8.CrossRefGoogle Scholar
  21. Giorgino F, Laviola L, Cavallo Perin P, et al. Factors associated with progression to macroalbuminuria in microalbuminuric type 1 diabetic patients: the EURODIAB prospective complications study. Diabetologia. 2004;47:1020–8.CrossRefGoogle Scholar
  22. Gnudi L, Karalliedde J. Beat it early. Putative renoprotective hemodynamic effects of oral hypoglicemic agents. Nephrol Dial Transplant. 2016;31:1036–43.CrossRefGoogle Scholar
  23. Groop PH, Cooper ME, Perkovic V, et al. Dipeptidyl peptidase-4 inhibition with linagliptin and effects on hyperglycaemia and albuminuria in patients with type 2 diabetes and renal dysfunction: rationale and design of the MARLINA-T2D™ trial. Diab Vasc Dis Res. 2015;12(6):455–62.CrossRefGoogle Scholar
  24. Haller H, Ito S, Izzo JL, et al. Olmesartan for the delay or prevention of microalbuminuria in type 2 diabetes. N Engl J Med. 2011;364:907–17.CrossRefGoogle Scholar
  25. Hasslacher C, Kulozik F, Lorenzo Bermejo J. Treatment with insulin analogs, especially Glargine and Lispro, associates with better renal function and higher hemoglobin levels in type 1 diabetic patients with impaired kidney function. Ther Adv Endocrinol Metab. 2016;7(4):166–77.CrossRefGoogle Scholar
  26. Heart Outcomes Prevention Evaluation (HOPE) Study Investigators. Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Lancet. 2000;355:253–9.CrossRefGoogle Scholar
  27. Holmes G, Galitz L, Hu P, Lyness W. Pharmacokinetics of insulin aspart in obesity, renal impairment, or hepatic impairment. Br J Clin Pharmacol. 2005;60(5):469–76.CrossRefGoogle Scholar
  28. Holstein A, Stumvoll M. Contraindications can damage your health–is metformin a case in point? Diabetologia. 2005;48:2454–9.CrossRefGoogle Scholar
  29. Hostetter TH, Troy JL, Brenner BM. Glomerular hemodynamic in experimental diabetes mellitus. Kidney Int. 1981;19:410–5.CrossRefGoogle Scholar
  30. Howse PM, Chibrikova LN, Twells LK et al. Safety and efficacy of incretin-based therapies in patients with type 2 diabetes mellitus and CKD: a systematic review and Meta-analysis. Am J Kidney Dis. 2016. pii: S0272-6386(16)30285-2.Google Scholar
  31. Hung AM, Roumie CL, Greevy RA, et al. Comparative effectiveness of incident oral antidiabetic drugs on kidney function. Kidney Int. 2012;81:698–706.CrossRefGoogle Scholar
  32. Kainz A, Hronsky M, Stel VS, et al. Prediction of prevalence of chronic kidney disease in diabetic patients in countries of the European Union up to 2015. Nephrol Dial Transpl. 2015;30:13–118.CrossRefGoogle Scholar
  33. KDOQI. KDOQI clinical practice guidelines and clinical practice recommendations for diabetes and chronic kidney disease. Am J Kidney Dis. 2007;49(s2):S12–S154.Google Scholar
  34. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. 2013;S3:1–150.Google Scholar
  35. Kiss I, Arold G, Roepstorff C, Bøttcher SG, Klim S, Haahr H. Insulin degludec: pharmacokinetics in patients with renal impairment. Clin Pharmacokinet. 2014;53(2):175–83.CrossRefGoogle Scholar
  36. Kohan DE, Fioretto P, Tang W, List JF. Long- term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control. Kidney Int. 2014;85:962–71.CrossRefGoogle Scholar
  37. Kramer H, Toto R, Peshock R, et al. Association between chronic kidney disease and coronary artery calcification: the Dallas heart study. J Am Soc Nephrol. 2005;16(2):507–13.CrossRefGoogle Scholar
  38. Kulozik F, Hasslacher C. Insulin requirements in patients with diabetes and declining kidney function: differences between insulin analogues and human insulin? Ther Adv Endocrinol Metab. 2013;4(4):113–21.CrossRefGoogle Scholar
  39. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. For the collaborative study group*. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. N Engl J Med. 1993;329:1456–62.CrossRefGoogle Scholar
  40. Lewis EJ, Hunsicker LG, Clarke WR, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med. 2001;345:851–60.CrossRefGoogle Scholar
  41. MacIsaac RJ, Panagiotopoulos S, McNeil KJ, et al. Is nonalbuminuric renal insufficiency in type 2 diabetes related to an increase in intrarenal vascular disease? Diabetes Care. 2006;29(7):1560–6.CrossRefGoogle Scholar
  42. Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016a;375(4):311–22.CrossRefGoogle Scholar
  43. Marso SP, McGuire DK, Zinman B, et al. Design of DEVOTE (trial comparing cardiovascular safety of insulin Degludec vs insulin glargine in patients with type 2 diabetes at high risk of cardiovascular events) – DEVOTE 1. Am Heart J. 2016b;179:175–83.CrossRefGoogle Scholar
  44. Matsushita K, van der Velde M, Astor BC, et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet. 2010;375(9731):2073–81.CrossRefGoogle Scholar
  45. Moen MF, Zhan M, Hsu VD, et al. Frequency of hypoglycemia and its significance in chronic kidney disease. Clin J Am Soc Nephrol. 2009;4(6):1121–7.CrossRefGoogle Scholar
  46. Mogensen CE. Microalbuminuria, blood pressure and diabetic renal disease: origin and development of ideas. Diabetologia. 1999;42:263–85.CrossRefGoogle Scholar
  47. Molitch ME, Adler AI, Flyvbjerg A, et al. Diabetic kidney disease: a clinical update from kidney disease: improving global outcomes. Kidney Int. 2015;87:20–30.CrossRefGoogle Scholar
  48. Moody WE, Edwards NC, Chue CD, et al. Townend arterial disease in chronic kidney disease. Heart. 2013;99(6):365–72.CrossRefGoogle Scholar
  49. Nakano T, Ninomiya T, Sumiyoshi S, et al. Association of kidney function with coronary atherosclerosis and calcification in autopsy samples from Japanese elders: the Hisayama study. Am J Kidney Dis. 2010;55(1):21–30.CrossRefGoogle Scholar
  50. Packham DK, Alves TP, Dwyer JP, et al. Relative incidence of ESRD versus cardiovascular mortality in proteinuric type 2 diabetes and nephropathy: results from the DIAMETRIC (Diabetes Mellitus Treatment for Renal Insufficiency Consortium) database. Am J Kidney Dis. 2012;59(1):75–83.CrossRefGoogle Scholar
  51. Papadopoulou-Marketou NP, Chrousos GP, Kanaka-Gantenbein C. Diabetic nephropathy in type 1 diabetes: a review of early natural history, pathogenesis and diagnosis. Diabetes Metab Res Rev. 2016. [Epub ahead of print].Google Scholar
  52. Parving H-H, Lehnert H, Brochner-Mortensen J, et al. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med. 2001;345:870–8.CrossRefGoogle Scholar
  53. Parving HH, Brenner BM, McMurray JJV, et al. Cardiorenal end points in a trial of Aliskiren for type 2 diabetes. N Engl J Med. 2012;367:2204–13.CrossRefGoogle Scholar
  54. Penno G, Solini A, Bonora E, the Renal Insufficiency And Cardiovascular Events (RIACE) Study Group, et al. Clinical significance of nonalbuminuric renal impairment in type 2 diabetes. J Hypertens. 2011;29:1802–9.CrossRefGoogle Scholar
  55. Penno G, Solini A, Zoppini G, Renal Insufficiency And Cardiovascular Events (RIACE) Study Group, et al. Rate and determinants of association between advanced retinopathy and chronic kidney disease in patients with type 2 diabetes: the renal insufficiency and cardiovascular events (RIACE) Italian multicenter study. Diabetes Care. 2012;35(11):2317–23.CrossRefGoogle Scholar
  56. Perkins BA, Ficociello LH, Silva KH, et al. Regression of microalbuminuria in type 1 diabetes. N Engl J Med. 2003;348:2285–29.CrossRefGoogle Scholar
  57. Ragot S, Saulnier PJ, Velho G, Gand E, et al. Dynamic changes in renal function are associated with major cardiovascular events in patients with type 2 diabetes. Diabetes Care. 2016;39(7):1259–66.CrossRefGoogle Scholar
  58. Retnakaran R, Cull CA, Thorne KI, Adler AI, Holman RR, the UKPDS Study Group. Risk factors for renal dysfunction in type 2 diabetes: U.K. prospective diabetes study 74. Diabetes. 2006;55:1832–9.CrossRefGoogle Scholar
  59. Roumie CL, Hung AM, Greevy RA, et al. Comparative effectiveness of sulfonylurea and metformin monotherapy on cardiovascular events in type 2 diabetes mellitus: a cohort study. Ann Intern Med. 2012;157:601–10.CrossRefGoogle Scholar
  60. Ruggenenti P, Fassi A, Ilieva AP, et al. Preventing microalbuminuria in type 2 diabetes. N Engl J Med. 2004;351:1941–51.CrossRefGoogle Scholar
  61. Ruggenenti P, Porrini EL, Gaspari F, et al. Glomerular hyperfiltration and renal disease progression in type 2 diabetes. Diabetes Care. 2012;35:2061–8.CrossRefGoogle Scholar
  62. Schernthaner G, Mogensen CE, Schernthaner GH. The effects of GLP-1 analogues, DPP-4 inhibitors and SGLT2 inhibitors on the renal system. Diab Vasc Dis Res. 2014;11(5):306–23.CrossRefGoogle Scholar
  63. Shilpak M. Diabetic nephropathy: preventing progression. BMJ. 2010.Google Scholar
  64. Snyder RW, Berns JS. Use of insulin and oral hypoglycemic medications in patients with diabetes mellitus and advanced kidney disease. Semin Dial. 2004;17(5):365–70.CrossRefGoogle Scholar
  65. Solini A, Penno G, Bonora E, Renal Insufficiency And Cardiovascular Events (RIACE) Study Group, et al. Diverging association of reduced glomerular filtration rate and albuminuria with coronary and noncoronary events in patients with type 2 diabetes: the renal insufficiency and cardiovascular events (RIACE) Italian multicenter study. Diabetes Care. 2012;35(1):143–9.CrossRefGoogle Scholar
  66. Solini A, Zoppini G, Orsi E, et al. Renal insufficiency and cardiovascular events (RIACE) study group. Resistant hypertension in patients with type 2 diabetes: clinical correlates and association with complications. J Hypertens. 2014;32(12):2401–10.CrossRefGoogle Scholar
  67. Steinke JM, Sinaiko AR, Kramer MS, et al. The early natural history of nephropathy in type 1 diabetes. III. Predictors of 5-year urinary albumin excretion rate patterns in initially normoalbuminuric patients. Diabetes. 2005;54:2164–71.CrossRefGoogle Scholar
  68. Tabaei BP, Al-Kassab AS, Ilag LL, et al. Does microalbuminuria predict diabetic nephropathy? Diabetes Care. 2001;24:1560–6.CrossRefGoogle Scholar
  69. Tanaka T, Higashijima Y, Wada T, et al. The potential for renoprotection with incretin-based drugs. Kidney Int. 2014;86(4):701–11.CrossRefGoogle Scholar
  70. The 2016 USA Annual Renal data System.
  71. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329:977–86.CrossRefGoogle Scholar
  72. Tonelli M, Muntner P, Lloyd A, Alberta Kidney Disease Network, et al. Risk of coronary events in people with chronic kidney disease compared with those with diabetes: a population-level cohort study. Lancet. 2012;380(9844):807–14.CrossRefGoogle Scholar
  73. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352:837–53.CrossRefGoogle Scholar
  74. Urata H, Mori K, Emoto M, et al. Advantage of insulin glulisine over regular insulin in patients with type 2 diabetes and severe renal insufficiency. J Ren Nutr. 2015;25(2):129–34.CrossRefGoogle Scholar
  75. Wanner C, Inzucchi SE, Lachin JM, et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375:1799–800.CrossRefGoogle Scholar
  76. Yale JF, Bakris G, Cariou B, et al. DIA3004 study group. Efficacy and safety of canagliflozin over 52 weeks in patients with type 2 diabetes mellitus and chronic kidney disease. Diabetes Obes Metab. 2014;16:1016–27.CrossRefGoogle Scholar
  77. Zatz R, Dunn BR, Meyer TW, Anderson S, Rennke HG, Brenner BM. Prevention of diabetic glomerulopathy by pharmacological amelioration of glomerular capillary hypertension. J Clin Invest. 1986;77:1925–30.CrossRefGoogle Scholar
  78. Zoungas S, Chalmers J, Neal B, ADVANCE- ON Collaborative Group, et al. Follow-up of blood- pressure lowering and glucose control in type 2 diabetes. N Engl J Med. 2014;371:1392–406.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Surgical, Medical, Molecular and Critical Area PathologyUniversity of PisaPisaItaly
  2. 2.Department of Clinical and Experimental MedicineUniversity of CataniaCataniaItaly

Personalised recommendations