Advertisement

Metabolic Syndrome

  • Scott M. Grundy
Reference work entry
Part of the Endocrinology book series (ENDOCR)

Abstract

The metabolic syndrome is a multiple risk factor complex for atherosclerotic cardiovascular disease (ASCVD). These risk factors consist of atherogenic dyslipidemia, elevated blood pressure, elevated plasma glucose, a prothrombotic state, and a pro-inflammatory state. The presence of the metabolic syndrome doubles the risk for ASCVD and causes a fivefold increase in the risk for type 2 diabetes. Multiple factors contribute to the syndrome. The most important are overnutrition combined with catabolic defects in individual risk parameters. The accumulation of ectopic lipid in target tissues appears to be a common denominator in risk factor development. Most individuals with metabolic syndrome exhibit insulin resistance, and most also manifest upper body obesity. Both these abnormalities are produced largely by overnutrition. Primary management of metabolic syndrome is caloric restriction combined with increased physical activity. If this approach does not eliminate affected risk factors, consideration must be given to the use of drug therapies to treat individual risk factors.

Keywords

Metabolic syndrome Type 2 diabetes Insulin resistance Ectopic fat Overnutrition 

References

  1. Aarsland A, Chinkes D, Wolfe RR. Contributions of de novo synthesis of fatty acids to total VLDL-triglyceride secretion during prolonged hyperglycemia/hyperinsulinemia in normal man. J Clin Invest. 1996;98(9):2008–17.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Aarsland A, Wolfe RR. Hepatic secretion of VLDL fatty acids during stimulated lipogenesis in men. J Lipid Res. 1998;39(6):1280–6.PubMedGoogle Scholar
  3. Abate N, Burns D, Peshock RM, Garg A, Grundy SM. Estimation of adipose tissue mass by magnetic resonance imaging: validation against dissection in human cadavers. J Lipid Res. 1994;35(8):1490–6.PubMedGoogle Scholar
  4. Abate N, Chandalia M, Snell PG, Grundy SM. Adipose tissue metabolites and insulin resistance in nondiabetic Asian Indian men. J Clin Endocrinol Metab. 2004;89(6):2750–5.PubMedCrossRefGoogle Scholar
  5. Abate N, Garg A, Peshock RM, Stray-Gundersen J, Adams-Huet B, Grundy SM. Relationship of generalized and regional adiposity to insulin sensitivity in men with NIDDM. Diabetes. 1996;45(12):1684–93.PubMedCrossRefGoogle Scholar
  6. Abate N, Garg A, Peshock RM, Stray-Gundersen J, Grundy SM. Relationships of generalized and regional adiposity to insulin sensitivity in men. J Clin Invest. 1995;96(1):88–98.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, International Diabetes Federation Task Force on Epidemiology and Prevention, Hational Heart, Lung, and Blood Institute, American Heart Association, World Heart Federation, International Atherosclerosis Society, International Association for the Study of Obesity, et al. Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; National Heart, Lung, and Blood Institute; American Heart Association; world heart federation; international atherosclerosis society; and International Association for the Study of obesity. Circulation. 2009;120(16):1640–5.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Albu JB, Kovera AJ, Allen L, Wainwright M, Berk E, Raja-Khan N, et al. Independent association of insulin resistance with larger amounts of intermuscular adipose tissue and a greater acute insulin response to glucose in African American than in white nondiabetic women. Am J Clin Nutr. 2005;82:1210–7.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Almandoz JP, Singh E, Howell LA, Grothe K, Vlazny DT, Smailovic A, et al. Spillover of fatty acids during dietary fat storage in type 2 diabetes: relationship to body fat depots and effects of weight loss. Diabetes. 2013;62(6):1897–903.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Almind K, Bjorbaek C, Vestergaard H, Hansen T, Echwald S, Pedersen O. Amino acid polymorphisms of insulin receptor substrate-1 in non-insulin-dependent diabetes mellitus. Lancet. 1993;342:828–32.PubMedPubMedCentralCrossRefGoogle Scholar
  11. American Diabetes Association. Standards of medical care in diabetes–2014. Diabetes Care. 2014;37(Suppl 1):S14–80.CrossRefGoogle Scholar
  12. Assmann G, Schulte H. The importance of triglycerides: results from the prospective cardiovascular Münster (PROCAM) study. Eur J Epidemiol. 1992;8(Suppl 1):99–103.PubMedCrossRefGoogle Scholar
  13. Bandyopadhyay GK, Yu JG, Ofrecio J, Olefsky JM. Increased p85/55/50 expression and decreased phosphotidylinositol 3-kinase activity in insulin-resistant human skeletal muscle. Diabetes. 2005;54:2351–9.PubMedCrossRefGoogle Scholar
  14. Barden A, Singh R, Walters B, Phillips M, Beilin LJ. A simple scoring method using cardiometabolic risk measurements in pregnancy to determine 10-year risk of type 2 diabetes in women with gestational diabetes. Nutr Diabetes. 2013;3:e72.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Barzilai N, Huffman DM, Muzumdar RH, Bartke A. The critical role of metabolic pathways in aging. Diabetes. 2012;61(6):1315–22.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Båvenholm PN, Kuhl J, Pigon J, Saha AK, Ruderman NB, Efendic S. Insulin resistance in type 2 diabetes: association with truncal obesity, impaired fitness, and atypical malonyl coenzyme a regulation. J Clin Endocrinol Metab. 2003;88(1):82–7.PubMedCrossRefGoogle Scholar
  17. Berg AH, Scherer PE. Adipose tissue, inflammation, and cardiovascular disease. Circ Res. 2005;96(9):939–49.PubMedCrossRefGoogle Scholar
  18. Bishop DJ, Granata C, Eynon N. Can we optimise the exercise training prescription to maximise improvements in mitochondria function and content? Biochim Biophys Acta. 2014;1840(4):1266–75.PubMedCrossRefGoogle Scholar
  19. Björntorp P. "portal" adipose tissue as a generator of risk factors for cardiovascular disease and diabetes. Arteriosclerosis. 1990;10(4):493–6.PubMedCrossRefGoogle Scholar
  20. Bjorntorp P. Metabolic implications of body fat distribution. Diabetes Care. 1991;14:1132–43.PubMedCrossRefGoogle Scholar
  21. Björntorp P. The regulation of adipose tissue distribution in humans. Int J Obes Relat Metab Disord. 1996;20(4):291–302.PubMedGoogle Scholar
  22. Björntorp P. Visceral obesity: a “civilization syndrome”. Obes Res. 1993;1:206–22.PubMedCrossRefGoogle Scholar
  23. Bladbjerg EM, Larsen TM, Due A, Jespersen J, Stender S, Astrup A. Postprandial coagulation activation in over- weight individuals after weight loss: acute and long-term effects of a high-monounsaturated fat diet and a low-fat diet. Thromb Res. 2014;133:327–33.PubMedCrossRefGoogle Scholar
  24. Boden G, Chen X, Iqbal N. Acute lowering of plasma fatty acids lowers basal insulin secretion in diabetic and nondiabetic subjects. Diabetes. 1998;47:1609–12.PubMedCrossRefGoogle Scholar
  25. Boden G, Chen X, Rosner J, Barton M. Effects of a 48-h fat infusion on insulin secretion and glucose utilization. Diabetes. 1995;44(10):1239–42.PubMedCrossRefGoogle Scholar
  26. Boden G. Obesity, insulin resistance and free fatty acids. Curr Opin Endocrinol Diabetes Obes. 2011;18(2):139–43.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Brown MS, Goldstein JL. Selective versus total insulin resistance: a pathogenic paradox. Cell Metab. 2008;7(2):95–6.PubMedCrossRefGoogle Scholar
  28. Brownlee M, Vlassara H, Cerami A. Nonenzymatic glycosylation and the pathogenesis of diabetic complications. Ann Intern Med. 1984;101(4):527–37.PubMedCrossRefGoogle Scholar
  29. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54(6):1615–25.PubMedCrossRefGoogle Scholar
  30. Buchwald H, Avidor Y, Braunwald E, Jensen MD, Pories W, Fahrbach K, et al. Bariatric surgery: a systematic review and metaanalysis. JAMA. 2004;292:1724–37.PubMedCrossRefGoogle Scholar
  31. Buse MG. Hexosamines, insulin resistance, and the complications of diabetes: current status. Am J Physiol Endocrinol Metab. 2006;290(1):E1–8.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Cannon CP, Blazing MA, Giugliano RP, McCagg A, White JA, Theroux P, et al. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med. 2015;372:2387–97.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Carlsson AC, Risérus U, Ärnlöv J. Hypertriglyceridemic waist phenotype is associated with decreased insulin sensitivity and incident diabetes in elderly men. Obesity (Silver Spring). 2014;22(2):526–9.CrossRefGoogle Scholar
  34. Cefalu WT, Wang ZQ, Webel S, Bell-Farrow A, Crouse JR 3rd, Hinson WH, et al. Contribution of visceral fat mass to the insulin resistance of aging. Metabolism. 1995;44(7):954–9.PubMedCrossRefGoogle Scholar
  35. Charonis AS, Reger LA, Dege JE, Kouzi-Koliakos K, Furcht LT, Wohlhueter RM, et al. Laminin alterations after in vitro nonenzymatic glycosylation. Diabetes. 1990;39(7):807–14.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Chandalia M, Lin P, Seenivasan T, Livingston EH, Snell PG, Grundy SM, et al. Insulin resistance and body fat distribution in south Asian men compared to Caucasian men. PLoS One. 2007;2(8):e812.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Cherrington AD. Banting lecture 1997. Control of glucose uptake and release by the liver in vivo. Diabetes. 1999;48(5):1198–214.PubMedCrossRefGoogle Scholar
  38. Clifton PM. Bariatric surgery: results in obesity and effects on metabolic parameters. Curr Opin Lipidol. 2011;22:1–5.PubMedCrossRefGoogle Scholar
  39. Cushman SW. Cell biology of glucose transport: a key to understanding peripheral glucose utilization. Banting Lecture, Program and abstracts of the 62nd Scientific Sessions of the American Diabetes Association; June 14–18, 2002; San Francisco, California. Diabetes, 51(2).Google Scholar
  40. Decaudain A, Vantyghem MC, Guerci B, Hecart AC, Auclair M, Reznik Y, et al. New metabolic phenotypes in laminopathies: LMNA mutations in patients with severe metabolic syndrome. J Clin Endocrinol Metab. 2007;92:4835–44.PubMedCrossRefGoogle Scholar
  41. Deedwania P, Barter P, Carmena R, Fruchart JC, Grundy SM, Haffner S, et al. Reduction of low-density lipoprotein cholesterol in patients with coronary heart disease and metabolic syndrome: analysis of the treating to new targets study. Lancet. 2006;368:919–28.PubMedCrossRefGoogle Scholar
  42. DeFronzo RA, Tripathy D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care. 2009;32(Suppl 2):S157–63.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Després JP, Lemieux I, Bergeron J, Pibarot P, Mathieu P, Larose E, et al. Abdominal obesity and the metabolic syndrome: contribution to global cardiometabolic risk. Arterioscler Thromb Vasc Biol. 2008;28(6):1039–49.PubMedCrossRefGoogle Scholar
  44. Devlin CM, Leventhal AR, Kuriakose G, Schuchman EH, Williams KJ, Tabas I. Acid sphingomyelinase promotes lipoprotein retention within early atheromata and accelerates lesion progression. Arterioscler Thromb Vasc Biol. 2008;28(10):1723–30.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Devries MC, Samjoo IA, Hamadeh MJ, McCready C, Raha S, Watt MJ, et al. Endurance training modulates intramyocellular lipid compartmentalization and morphology in skeletal muscle of lean and obese women. J Clin Endocrinol Metab. 2013;98(12):4852–62.PubMedCrossRefGoogle Scholar
  46. Dobbins RL, Chester MW, Daniels MB, McGarry JD, Stein DT. Circulating fatty acids are essential for efficient glucose-stimulated insulin secretion after prolonged fasting in humans. Diabetes. 1998a;47(10):1613–8.PubMedCrossRefGoogle Scholar
  47. Dobbins RL, Chester MW, Stevenson BE, Daniels MB, Stein DT, McGarry JD. A fatty acid- dependent step is critically important for both glucose- and non-glucose-stimulated insulin secretion. J Clin Invest. 1998b;101(11):2370–6.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest. 2005;115(5):1343–51.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Dronavalli S, Bakris GL. Mechanistic insights into diuretic-induced insulin resistance. Hypertension. 2008;52:1009–11.PubMedCrossRefGoogle Scholar
  50. Egusa G, Beltz WF, Grundy SM, Howard BV. Influence of obesity on the metabolism of apolipoprotein B in humans. J Clin Invest. 1985;76(2):596–603.PubMedPubMedCentralCrossRefGoogle Scholar
  51. El Mkadem SA, Lautier C, Macari F, Molinari N, Lefèbvre P, Renard E, et al. Role of allelic variants Gly972Arg of IRS-1 and Gly1057Asp of IRS-2 in moderate-to-severe insulin resistance of women with polycystic ovary syndrome. Diabetes. 2001;50(9):2164–8.PubMedCrossRefGoogle Scholar
  52. Esposito DL, Li Y, Vanni C, Mammarella S, Veschi S, Della Loggia F, et al. A novel T608R missense mutation in insulin receptor substrate-1 identified in a subject with type 2 diabetes impairs metabolic insulin signaling. J Clin Endocrinol Metab. 2003;88(4):1468–75.PubMedCrossRefGoogle Scholar
  53. Everett BM, Pradhan AD, Solomon DH, Paynter N, Macfadyen J, Zaharris E, et al. Rationale and design of the cardiovascular inflammation reduction trial: a test of the inflammatory hypothesis of atherothrombosis. Am Heart J. 2013;166:199–207.e15.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Fall T, Ingelsson E. Genome-wide association studies of obesity and metabolic syndrome. Mol Cell Endocrinol. 2014;382:740–57.PubMedCrossRefGoogle Scholar
  55. Farah R, Khamisy-Farah R, Shurtz-Swirski R. Calcium channel blocker effect on insulin resistance and inflammatory markers in essential hypertension patients. Int Angiol. 2013;32:85–93.PubMedGoogle Scholar
  56. Felton CV, Crook D, Davies MJ, Oliver MF. Relation of plaque lipid composition and morphology to the stability of human aortic plaques. Arterioscler Thromb Vasc Biol. 1997;17(7):1337–45.PubMedCrossRefGoogle Scholar
  57. Fink LN, Costford SR, Lee YS, Jensen TE, Bilan PJ, Oberbach A, et al. Pro-inflammatory macrophages increase in skeletal muscle of high fat-fed mice and correlate with metabolic risk markers in humans. Obesity (Silver Spring). 2014;22:747–57.CrossRefGoogle Scholar
  58. Fink LN, Oberbach A, Costford SR, Chan KL, Sams A, Bluher M, et al. Expression of anti-inflammatory macrophage genes within skeletal muscle correlates with insulin sensitivity in human obesity and type 2 diabetes. Diabetologia. 2013;56:1623–8.PubMedCrossRefGoogle Scholar
  59. Flannery C, Dufour S, Rabøl R, Shulman GI, Petersen KF. Skeletal muscle insulin resistance promotes increased hepatic de novo lipogenesis, hyperlipidemia, and hepatic steatosis in the elderly. Diabetes. 2012;61(11):2711–7.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Flores L, Vidal J, Canivell S, Delgado S, Lacy A, Esmatjes E. Hypertension remission 1 year after bariatric surgery: predictive factors. Surg Obes Relat Dis. 2014;10:661–5.PubMedCrossRefGoogle Scholar
  61. Forbes GB. The companionship of lean and fat. In: Ellis KJ, Eastman JD, editors. Human body composition. New York: Plenum Press; 1993. p. 3–14.Google Scholar
  62. Foster MC, Hwang SJ, Porter SA, Massaro JM, Hoffman U, Fox CS. Fatty kidney, hypertension, and chronic kidney disease: the Framingham heart study. Hypertension. 2011;58(5):784–90.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Fried SK, Kral JG. Sex differences in regional distribution of fat cell size and lipoprotein lipase activity in morbidly obese patients. Int J Obes. 1987;11:129–40.PubMedGoogle Scholar
  64. Fryer LG, Foufelle F, Barnes K, Baldwin SA, Woods A, Carling D. Characterization of the role of the AMP-activated protein kinase in the stimulation of glucose transport in skeletal muscle cells. Biochem J. 2002;363:167–74.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Gabbay KH, Merola LO, Field RA. Sorbitol pathway: presence in nerve and cord with substrate accumulation in diabetes. Science. 1966;151(3707):209–10.PubMedCrossRefGoogle Scholar
  66. Gami AS, Witt BJ, Howard DE, Erwin PJ, Gami LA, Somers VK, et al. Metabolic syndrome and risk of incident cardiovascular events and death: a systematic review and meta-analysis of longitudinal studies. J Am Coll Cardiol. 2007;49(4):403–14.PubMedCrossRefGoogle Scholar
  67. Garg A, Misra A. Lipodystrophies: rare disorders causing metabolic syndrome. Endocrinol Metab Clin N Am. 2004;33(2):305–31.CrossRefGoogle Scholar
  68. Garg A. Acquired and inherited lipodystrophies. N Engl J Med. 2004;350(12):1220–34.PubMedCrossRefGoogle Scholar
  69. Gehrisch S. Common mutations of the lipoprotein lipase gene and their clinical significance. Curr Atheroscler Rep. 1999;1(1):70–8.PubMedCrossRefGoogle Scholar
  70. Geraldes P, King GL. Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res. 2010;106(8):1319–31.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Giardino I, Edelstein D, Brownlee M. Nonenzymatic glycosylation in vitro and in bovine endothelial cells alters basic fibroblast growth factor activity. A model for intracellular glycosylation in diabetes. J Clin Invest. 1994;94(1):110–7.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Goldberg RB, Mather K. Targeting the consequences of the metabolic syndrome in the diabetes prevention program. Arterioscler Thromb Vasc Biol. 2012;32:2077–90.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Goldstein LB, Bushnell CD, Adams RJ, Appel LJ, Braun LT, Chaturvedi S, et al. Guidelines for the primary prevention of stroke: a guideline for health care professionals from the American Heart Association/ American Stroke Association. Stroke. 2011;42:517–84.PubMedCrossRefGoogle Scholar
  74. Goodpaster BH, He J, Watkins S, Kelley DE. Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes. J Clin Endocrinol Metab. 2001;86(12):5755–61.PubMedCrossRefGoogle Scholar
  75. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, et al. American Heart Association; National Heart, Lung, and Blood Institute. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Circulation. 2005;112(17):2735–52.CrossRefPubMedGoogle Scholar
  76. Grundy SM, Mok HY, Zech L, Steinberg D, Berman M. Transport of very low density lipoprotein triglycerides in varying degrees of obesity and hypertriglyceridemia. J Clin Invest. 1979;63(6):1274–83.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Grundy SM, Neeland IJ, Turer AT, Vega GL. Ethnic and gender susceptibility to metabolic risk. Metab Syndr Relat Disord. 2014;12(2):110–6.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Grundy SM, Neeland IJ, Turer AT, Vega GL. Waist circumference as measure of abdominal fat compartments. J Obes. 2013;2013:454285.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Grundy SM, Vega GL, Tomassini JE, Tershakovec AM. Correlation of non-high-density lipoprotein cholesterol and low-density lipoprotein cholesterol with apolipoprotein B during simvastatin þ fenofibrate therapy in patients with combined hyperlipidemia (a subanalysis of the SAFARI trial). Am J Cardiol. 2009;104:548–53.PubMedCrossRefGoogle Scholar
  80. Grundy SM. Adipose tissue and metabolic syndrome: too much, too little or neither. Eur J Clin Investig. 2015;45:1209–17.CrossRefGoogle Scholar
  81. Grundy SM. Metabolic syndrome pandemic. Arterioscler Thromb Vasc Biol. 2008;28(4):629–36.PubMedCrossRefGoogle Scholar
  82. Grundy SM. Metabolic syndrome: a multiplex cardiovascular risk factor. J Clin Endocrinol Metab. 2007;92(2):399–404.PubMedCrossRefGoogle Scholar
  83. Guerrero R, Vega GL, Grundy SM, Browning JD. Ethnic differences in hepatic steatosis: an insulin resistance paradox? Hepatology. 2009;49(3):791–801.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Guo ZK, Hensrud DD, Johnson CM, Jensen MD. Regional postprandial fatty acid metabolism in different obesity phenotypes. Diabetes. 1999;48:1586–92.PubMedCrossRefGoogle Scholar
  85. Gustafson B, Hammarstedt A, Hedjazifar S, Smith U. Restricted adipogenesis in hypertrophic obesity: the role of WISP2, WNT, and BMP4. Diabetes. 2013;62(9):2997–3004.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Hajat C, Shather Z. Prevalence of metabolic syndrome and prediction of diabetes using IDF versus ATPIII criteria in a Middle East population. Diabetes Res Clin Pract. 2012;98(3):481–6.PubMedCrossRefGoogle Scholar
  87. Hall JE. Pathophysiology of obesity hypertension. Curr Hypertens Rep. 2000;2:139–47.PubMedCrossRefGoogle Scholar
  88. Hikmat F, Appel LJ. Effects of the DASH diet on blood pressure in patients with and without metabolic syndrome: results from the DASH trial. J Hum Hypertens. 2014;28:170–5.PubMedCrossRefGoogle Scholar
  89. Hoeks J, Schrauwen P. Muscle mitochondria and insulin resistance: a human perspective. Trends Endocrinol Metab. 2012;23(9):444–50.PubMedCrossRefGoogle Scholar
  90. Holland WL, Miller RA, Wang ZV, Sun K, Barth BM, Bui HH, et al. Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat Med. 2011;17(1):55–63.PubMedCrossRefGoogle Scholar
  91. Homsi R, Sprinkart AM, Gieseke J, Yuecel S, Meier-Schroers M, Luetkens J, et al. 3D-Dixon cardiac magnetic resonance detects an increased epicardial fat volume in hypertensive men with myocardial infarction. Eur J Radiol. 2016;85(5):936–42.PubMedCrossRefGoogle Scholar
  92. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259(5091):87–91.PubMedCrossRefGoogle Scholar
  93. Hu G, Qiao Q, Tuomilehto J, Balkau B, Borch-Johnsen K, Pyorala K, DECODE Study Group. Prevalence of the metabolic syndrome and its relation to all-cause and cardiovascular mortality in nondiabetic European men and women. Arch Intern Med. 2004;164(10):1066–76.PubMedCrossRefGoogle Scholar
  94. Huang-Doran I, Sleigh A, Rochford JJ, O’Rahilly S, Savage DB. Lipodystrophy: metabolic insights from a rare disorder. J Endocrinol. 2010;207(3):245–55.PubMedCrossRefGoogle Scholar
  95. Hue L, Taegtmeyer H. The Randle cycle revisited: a new head for an old hat. Am J Physiol Endocrinol Metab. 2009;297:E578–91.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Iacobellis G. Local and systemic effects of the multifaceted epicardial adipose tissue depot. Nat Rev Endocrinol. 2015;11(6):363–71.CrossRefPubMedGoogle Scholar
  97. Imai Y, Fusco A, Suzuki Y, Lesniak MA, D’Alfonso R, Sesti G. Variant sequences of insulin receptor substrate-1 in patients with noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab. 1994;79:1655–8.PubMedGoogle Scholar
  98. Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, et al. Management of hyperglycemia in type 2 diabetes, 2015:a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of diabetes. Diabetes Care. 2015;38:140–9.PubMedCrossRefGoogle Scholar
  99. Itani SI, Ruderman NB, Schmieder F, Boden G. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes. 2002;51(7):2005–11.PubMedCrossRefGoogle Scholar
  100. Jacobson TA, Ito MK, Maki KC, Orringer CE, Bays HE, Jones PH, et al. National lipid association recommendations for patient-centered management of dyslipidemia: part 1 – full report. J Clin Lipidol. 2015;9:129–69.PubMedCrossRefGoogle Scholar
  101. James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the eighth joint National Committee (JNC 8). JAMA. 2014;311(5):507–20.CrossRefPubMedPubMedCentralGoogle Scholar
  102. Janghorbani M, Amini M. Metabolic syndrome in first degree relatives of patients with type 2 diabetes: incidence and risk factors. Diabetes Metab Syndr. 2011;5(4):201–6.PubMedCrossRefGoogle Scholar
  103. Jarcho JA, Keaney JF Jr. Proof that lower is better–LDL cholesterol and IMPROVE-IT. N Engl J Med. 2015;372:2448–50.PubMedCrossRefGoogle Scholar
  104. Jensen MD, Haymond MW, Rizza RA, Cryer PE, Miles JM. Influence of body fat distribution on free fatty acid metabolism in obesity. J Clin Invest. 1989;83(4):1168–73.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Jensen MD. Is visceral fat involved in the pathogenesis of the metabolic syndrome? Human model. Obesity (Silver Spring). 2006;14(Suppl 1):20S–4S.CrossRefGoogle Scholar
  106. Jensen MD. Role of body fat distribution and the metabolic complications of obesity. J Clin Endocrinol Metab. 2008;93(Suppl 1):S57–63.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Jornayvaz FR, Samuel VT, Shulman GI. The role of muscle insulin resistance in the pathogenesis of atherogenic dyslipidemia and nonalcoholic fatty liver disease associated with the metabolic syndrome. Annu Rev Nutr. 2010;30:273–90.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Kamide K. Role of renin-angiotensin-aldosterone system in metabolic syndrome and obesity-related hypertension. Curr Hypertens Rev. 2014. [E-pub ahead of print].Google Scholar
  109. Karastergiou K, Fried SK, Xie H, Lee MJ, Divoux A, Rosencrantz MA, et al. Distinct developmental signatures of human abdominal and gluteal subcutaneous adipose tissue depots. J Clin Endocrinol Metab. 2013;98(1):362–71.PubMedCrossRefPubMedCentralGoogle Scholar
  110. Karpe F, Pinnick KE. Biology of upper-body and lower-body adipose tissue – link to whole-body phenotypes. Nat Rev Endocrinol. 2015;11(2):90–100.PubMedCrossRefPubMedCentralGoogle Scholar
  111. Kastelein JJ, van der Steeg WA, Holme I, Gaffney M, Cater NB, Barter P, TNT Study Group, IDEAL Study Group, et al. Lipids, apolipoproteins, and their ratios in relation to cardiovascular events with statin treatment. Circulation. 2008;117(23):3002–9.PubMedCrossRefPubMedCentralGoogle Scholar
  112. Kawanaka K, Han DH, Gao J, Nolte LA, Holloszy JO. Development of glucose-induced insulin resistance in muscle requires protein synthesis. J Biol Chem. 2001;276(23):20101–7.PubMedCrossRefPubMedCentralGoogle Scholar
  113. Kazlauskienė L, Butnorienė J, Norkus A. Metabolic syndrome related to cardiovascular events in a 10-year prospective study. Diabetol Metab Syndr. 2015;7:102.PubMedPubMedCentralCrossRefGoogle Scholar
  114. Kelley DE, He J, Menshikova EV, Ritov VB. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes. 2002;51(10):2944–50.CrossRefPubMedGoogle Scholar
  115. Kesäniemi YA, Beltz WF, Grundy SM. Comparisons of metabolism of apolipoprotein B in normal subjects, obese patients, and patients with coronary heart disease. J Clin Invest. 1985;76(2):586–95.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Kim JY, van de Wall E, Laplante M, Azzara A, Trujillo ME, Hofmann SM, et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J Clin Invest. 2007;117(9):2621–37.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Kissebah AH, Krakower GR. Regional adiposity and morbidity. Physiol Rev. 1994;74:761–811.PubMedCrossRefPubMedCentralGoogle Scholar
  118. Klein BE, Klein R, Lee KE. Components of the metabolic syndrome and risk of cardiovascular disease and diabetes in beaver dam. Diabetes Care. 2002;25(10):1790–4.PubMedCrossRefGoogle Scholar
  119. Klöting N, Blüher M. Adipocyte dysfunction, inflammation and metabolic syndrome. Rev Endocr Metab Disord. 2014;15(4):277–87.PubMedCrossRefGoogle Scholar
  120. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346:393–403.CrossRefPubMedPubMedCentralGoogle Scholar
  121. Knowler WC, Fowler SE, Hamman RF, Christophi CA, Hoffman HJ, Brennamen AT, Diabetes Prevention Program Research Group, et al. 10-year follow-up of diabetes incidence and weight loss in the diabetes prevention program outcomes study. Lancet. 2009;374(9702):1677–86.PubMedCrossRefGoogle Scholar
  122. Kolodgie FD, Gold HK, Burke AP, Fowler DR, Kruth HS, Weber DK, et al. Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med. 2003;349(24):2316–25.PubMedCrossRefPubMedCentralGoogle Scholar
  123. Komatsu M, Takei M, Ishii H, Sato Y. Glucose-stimulated insulin secretion: a newer perspective. Journal of Diabetes Investigation. 2013;4(6):511–6.PubMedPubMedCentralCrossRefGoogle Scholar
  124. Krotkiewski M, Björntorp P, Sjöström L, Smith U. Impact of obesity on metabolism in men and women. Importance of regional adipose tissue distribution. J Clin Invest. 1983;72(3):1150–62.PubMedPubMedCentralCrossRefGoogle Scholar
  125. Kubota N, Yano W, Kubota T, Yamauchi T, Itoh S, Kumagai H, et al. Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell Metab. 2007;6(1):55–68.PubMedCrossRefGoogle Scholar
  126. Kuk JL, Katzmarzyk PT, Nichaman MZ, Church TS, Blair SN, Ross R. Visceral fat is an independent predictor of all-cause mortality in men. Obesity. 2006;14(2):336–42.PubMedCrossRefGoogle Scholar
  127. Lee BC, Lee WJ, Lo SC, Hsu HC, Chien KL, Chang YC, et al. The ratio of epicardial to body fat improves the prediction of coronary artery disease beyond calcium and Framingham risk scores. Int J Cardiovasc Imaging. 2016;32(Supplement 1):117–27.PubMedCrossRefPubMedCentralGoogle Scholar
  128. Lee J, Ozcan U. Unfolded protein response signaling and metabolic diseases. J Biol Chem. 2014;289(3):1203–11.PubMedCrossRefGoogle Scholar
  129. Lee R, Wong TY, Sabanayagam C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis (Lond). 2015;2:17.CrossRefGoogle Scholar
  130. Lehr S, Hartwig S, Sell H. Adipokines: a treasure trove for the discovery of biomarkers for metabolic disorders. Proteomics Clin Appl. 2012;6(1–2):91–101.PubMedCrossRefGoogle Scholar
  131. Leon B, Jenkins S, Pepin K, Chaudhry H, Smith K, Zalos G, et al. Insulin and extremity muscle mass in overweight and obese women. Int J Obes. 2013;37:1560–4.CrossRefGoogle Scholar
  132. Li YM, Mitsuhashi T, Wojciechowicz D, Shimizu N, Li J, Stitt A, et al. Molecular identity and cellular distribution of advanced glycation endproduct receptors: relationship of p60 to OST-48 and p90 to 80K-H membrane proteins. Proc Natl Acad Sci U S A. 1996;93(20):11047–52.PubMedPubMedCentralCrossRefGoogle Scholar
  133. Lithell HO. Hyperinsulinemia, insulin resistance, and the treatment of hypertension. Am J Hypertens. 1996;9:150S–4S.PubMedCrossRefGoogle Scholar
  134. Lorenzo C, Okoloise M, Williams K, Stern MP, Haffner SM, Study SAH. The metabolic syndrome as predictor of type 2 diabetes: the San Antonio heart study. Diabetes Care. 2003;26(11):3153–9.PubMedCrossRefGoogle Scholar
  135. Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science. 2005;307(5708):384–7.PubMedCrossRefGoogle Scholar
  136. Manolopoulos KN, Karpe F, Frayn KN. Gluteofemoral body fat as a determinant of metabolic health. Int J Obes. 2010;34:949–59.CrossRefGoogle Scholar
  137. Matsushima T, Nakaya N, Mizuno K, Ohashi Y, Teramoto T, Yokoyama S, et al. The effect of low-dose pravastatin in metabolic syndrome for primary prevention of cardiovascular disease in Japan: a post hoc analysis of the MEGA study. J Cardiovasc Pharmacol Ther. 2012;17:153–8.PubMedCrossRefGoogle Scholar
  138. Matsuzawa Y, Funahashi T, Nakamura T. The concept of metabolic syndrome: contribution of visceral fat accumulation and its molecular mechanism. J Atheroscler Thromb. 2011;18:629–39.PubMedCrossRefGoogle Scholar
  139. McLellan AC, Thornalley PJ, Benn J, Sonksen PH. Glyoxalase system in clinical diabetes mellitus and correlation with diabetic complications. Clin Sci (Lond). 1994;87(1):21–9.CrossRefGoogle Scholar
  140. Meis SB, Schuster D, Gaillard T, Osei K. Metabolic syndrome in nondiabetic, obese, first-degree relatives of African American patients with type 2 diabetes: African American triglycerides-HDL-C and insulin resistance paradox. Ethn Dis. 2006;16(4):830–6.PubMedGoogle Scholar
  141. Miettinen H, Salomaa V. Diabetes and macrovascular disease. J Cardiovasc Risk. 1997;4(2):76–82.PubMedCrossRefGoogle Scholar
  142. Miller NE. CETP inhibitors and cardiovascular disease: time to think again. F1000 Res. 2014;3:124.Google Scholar
  143. Morino K, Petersen KF, Dufour S, Befroy D, Frattini J, Shatzkes N, et al. Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents. J Clin Invest. 2005;115(12):3587–93.PubMedPubMedCentralCrossRefGoogle Scholar
  144. Mottillo S, Filion KB, Genest J, Joseph L, Pilote I, Poirier P, et al. The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis. J Am Coll Cardiol. 2010;56(14):1113–32.PubMedCrossRefGoogle Scholar
  145. Nathan DM. Diabetes: advances in diagnosis and treatment. JAMA. 2015;314(10):1052–62.PubMedCrossRefGoogle Scholar
  146. National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III) final report. Circulation. 2002;106(25):3143–421.CrossRefGoogle Scholar
  147. Neeper M, Schmidt AM, Brett J, Yan SD, Wang F, Pan YC, et al. Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem. 1992;267(21):14998–5004.PubMedGoogle Scholar
  148. Nelson BA, Robinson KA, Buse MG. Defective Akt activation is associated with glucose- but not glucosamine-induced insulin resistance. Am J Physiol Endocrinol Metab. 2002;282(3):E497–506.PubMedCrossRefGoogle Scholar
  149. Nelson RH, Basu R, Johnson CM, Rizza RM, Miles JM. Splanchnic spillover of extracellular lipase-generated fatty acids in overweight and obese humans. Diabetes. 2007;56(12):2878–84.PubMedCrossRefGoogle Scholar
  150. Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the global burden of disease study 2013. Lancet. 2014;384(9945):766–81.PubMedPubMedCentralCrossRefGoogle Scholar
  151. Nie L, Wang J, Clark LT, Tang A, Vega GL, Grundy SM, et al. Body mass index and hepatic lipase gene (LIPC) polymorphism jointly influence postheparin plasma hepatic lipase activity. J Lipid Res. 1998;39(5):1127–30.PubMedGoogle Scholar
  152. Nielsen S, Guo ZK, Johnson CM, Hensrud DD, Jensen MD. Splanchnic lipolysis in human obesity. J Clin Invest. 2004;113(11):1582–8.PubMedPubMedCentralCrossRefGoogle Scholar
  153. Norris JM, Rich SS. Genetics of glucose homeostasis: implications for insulin resistance and metabolic syndrome. Arterioscler Thromb Vasc Biol. 2012;32:2091–6.PubMedPubMedCentralCrossRefGoogle Scholar
  154. Osborn O, Olefsky JM. The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med. 2012;18:363–74.CrossRefPubMedGoogle Scholar
  155. Park CW. Diabetic kidney disease: from epidemiology to clinical perspectives. Diabetes Metab J. 2014;38(4):252–60.PubMedPubMedCentralCrossRefGoogle Scholar
  156. Park YW, Zhu S, Palaniappan L, Heshka S, Carnethon MR, Heymsfield SB. The metabolic syndrome: prevalence and associated risk factor findings in the US population from the third National Health and nutrition examination survey, 1988-1994. Arch Intern Med. 2003;163(4):427–36.PubMedPubMedCentralCrossRefGoogle Scholar
  157. Peiris AN, Hennes MI, Evans DJ, Wilson CR, Lee MB, Kissebah AH. Relationship of anthropometric measurements of body fat distribution to metabolic profile in premenopausal women. Acta Med Scand Suppl. 1988;723:179–88.PubMedGoogle Scholar
  158. Perseghin G, Price TB, Petersen KF, Roden M, Cline GW, Gerow K, et al. Increased glucose transport-phosphorylation and muscle glycogen synthesis after exercise training in insulin-resistant subjects. N Engl J Med. 1996;335(18):1357–62.PubMedCrossRefPubMedCentralGoogle Scholar
  159. Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL, et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science. 2003;300(5622):1140–2.PubMedPubMedCentralCrossRefGoogle Scholar
  160. Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med. 2004;350:664–71.PubMedPubMedCentralCrossRefGoogle Scholar
  161. Petersen KF, Dufour S, Morino K, Yoo PS, Cline GW, Shulman GI. Reversal of muscle insulin resistance by weight reduction in young, lean, insulin-resistant offspring of parents with type 2 diabetes. Proc Natl Acad Sci U S A. 2012;109(21):8236–40.PubMedPubMedCentralCrossRefGoogle Scholar
  162. Petersen KF, Dufour S, Savage DB, Bilz S, Solomon G, Yonemitsu S, et al. The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome. Proc Natl Acad Sci U S A. 2007;104:12587–94.PubMedPubMedCentralCrossRefGoogle Scholar
  163. Petersen KF, Dufour S, Shulman GI. Decreased insulin-stimulated ATP synthesis and phosphate transport in muscle of insulin-resistant offspring of type 2 diabetic parents. PLoS Med. 2005;2(9):e233.PubMedPubMedCentralCrossRefGoogle Scholar
  164. Petersen KF, Morino K, Alves TC, Kibbey RG, Dufour S, Sono S, et al. Effect of aging on muscle mitochondrial substrate utilization in humans. Proc Natl Acad Sci U S A. 2015;112(36):11330–4.PubMedPubMedCentralCrossRefGoogle Scholar
  165. Pignone M, Alberts MJ, Colwell JA, Cushman M, Inzucchi SE, Mukherjee D, et al. Aspirin for primary prevention of cardiovascular events in people with diabetes: a position statement of the American Diabetes Association, a scientific statement of the American Heart Association, and an expert consensus document of the American College of Cardiology Foundation. DiabetesCare. 2010;33:1395–402.Google Scholar
  166. Pinnick KE, Nicholson G, Manolopoulos KN, McQuaid SE, Valet P, Frayn KN, MolPAGE Consortium, MI MC, Holmes CC, Karpe F, et al. Distinct developmental profile of lower-body adipose tissue defines resistance against obesity-associated metabolic complications. Diabetes. 2014;63(11):3785–97.PubMedCrossRefGoogle Scholar
  167. Puigserver P, Rhee J, Donovan J, Walkey CJ, Yoon JC, Oriente F, et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature. 2003;423(6939):550–5.PubMedPubMedCentralCrossRefGoogle Scholar
  168. Pyörälä K, Ballantyne CM, Gumbiner B, Lee MW, Shah A, Davies MJ, et al. Reduction of cardiovascular events by simvastatin in nondiabetic coronary heart disease patients with and without the metabolic syndrome: subgroup analyses of the Scandinavian simvastatin survival study (4S). Diabetes Care. 2004;27:1735–40.PubMedCrossRefGoogle Scholar
  169. Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963;1:785–9.PubMedPubMedCentralCrossRefGoogle Scholar
  170. Randle PJ, Priestman DA, Mistry SC, Halsall A. Glucose fatty acid interactions and the regulation of glucose disposal. J Cell Biochem. 1994;55(Suppl):1–11.PubMedCrossRefGoogle Scholar
  171. Rankinen T, Sarzynski MA, Ghosh S, Bouchard C. Are there genetic paths common to obesity, cardiovascular disease outcomes, and cardiovascular risk factors? Circ Res. 2015;116(5):909–22.PubMedPubMedCentralCrossRefGoogle Scholar
  172. Rao A, Pandya V, Whaley-Connell A. Obesity and insulin resistance in resistant hypertension: implications for the kidney. Adv Chronic Kidney Dis. 2015;22:211–7.PubMedCrossRefGoogle Scholar
  173. Reaven GM, Lerner RL, Stern MP, Farquhar JW. Role of insulin in endogenous hypertriglyceridemia. J Clin Invest. 1967;46(11):1756–67.PubMedPubMedCentralCrossRefGoogle Scholar
  174. Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 1988;37(12):1595–607.PubMedCrossRefGoogle Scholar
  175. Reaven GM. Insulin resistance, the insulin resistance syndrome, and cardiovascular disease. Panminerva Med. 2005;47(4):201–10.PubMedGoogle Scholar
  176. Reaven GM. Insulin resistance/compensatory hyperinsulinemia, essential hypertension, and cardiovascular disease. J Clin Endocrinol Metab. 2003;88(6):2399–403.PubMedCrossRefGoogle Scholar
  177. Reaven GM. Insulin resistance: the link between obesity and cardiovascular disease. Med Clin North Am. 2011;95(5):875–92.PubMedCrossRefGoogle Scholar
  178. Reaven GM. Pathophysiology of insulin resistance in human disease. Physiol Rev. 1995;75(3):473–86.PubMedCrossRefGoogle Scholar
  179. Reaven GM. Relationship between insulin resistance and hypertension. Diabetes Care. 1991;14(Suppl 4):33–8.PubMedCrossRefGoogle Scholar
  180. Reisin E, Abel R, Modan M, Silverberg DS, Eliahou HE, Modan B. Effect of weight loss without salt restriction on the reduction of blood pressure in overweight hypertensive patients. N Engl J Med. 1978;298:1–6.PubMedCrossRefGoogle Scholar
  181. Renström F, Burén J, Svensson M, Eriksson JW. Insulin resistance induced by high glucose and high insulin precedes insulin receptor substrate 1 protein depletion in human adipocytes. Metabolism. 2007;56(2):190–8.PubMedCrossRefGoogle Scholar
  182. Ricci C, Gaeta M, Rausa E, Macchitella Y, Bonavina L. Early impact of bariatric surgery on type II diabetes, hypertension, and hyperlipidemia: a systematic review, meta-analysis and meta-regression on 6,587patients. Obes Surg. 2014;24:522–8.PubMedCrossRefGoogle Scholar
  183. Richter EA, Ruderman NB. AMPK and the biochemistry of exercise: implications for human health and disease. Biochem J. 2009;418(2):261–75.PubMedPubMedCentralCrossRefGoogle Scholar
  184. Ridker PM, Lüscher TF. Anti-inflammatory therapies for cardiovascular disease. Eur Heart J. 2014;35:1782–91.PubMedPubMedCentralCrossRefGoogle Scholar
  185. Ridker PM, Thuren T, Zalewski A, Libby P. Interleukin-1β inhibition and the prevention of recurrent cardiovascular events: rationale and design of the Canakinumab anti-inflammatory thrombosis outcomes study (CANTOS). Am Heart J. 2011;162:597–605.PubMedCrossRefGoogle Scholar
  186. Robinson JG, Farnier M, Krempf M, Bergeron J, Luc G, Averna M, et al. Efficacy and safety of alirocumabin reducing lipids and cardiovascular events. N Engl J Med. 2015;372:1489–99.PubMedPubMedCentralCrossRefGoogle Scholar
  187. Robinson KA, Buse MG. Mechanisms of high-glucose/insulin-mediated desensitization of acute insulin-stimulated glucose transport and Akt activation. Am J Physiol Endocrinol Metab. 2008;294(5):E870–81.PubMedPubMedCentralCrossRefGoogle Scholar
  188. Romeo S, Kozlitina J, Xing C, Pertsemlidis A, Cox D, Pennacchio LA, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2008;40(12):1461–5.PubMedPubMedCentralCrossRefGoogle Scholar
  189. Roust LR, Jensen MD. Postprandial free fatty acid kinetics are abnormal in upper body obesity. Diabetes. 1993;42:1567–73.PubMedCrossRefGoogle Scholar
  190. Ruderman N, Chisholm D, Pi-Sunyer X, Schneider S. The metabolically obese, normal-weight individual revisited. Diabetes. 1998;47(5):699–713.PubMedCrossRefGoogle Scholar
  191. Ruderman NB, Carling D, Prentki M, Cacicedo JM. AMPK, insulin resistance, and the metabolic syndrome. J Clin Invest. 2013;123(7):2764–72.PubMedPubMedCentralCrossRefGoogle Scholar
  192. Ruderman NB, Saha AK, Vavvas D, Witters LA. Malonyl-CoA, fuel sensing, and insulin resistance. Am J Phys. 1999;276(1 Pt 1):E1–E18.Google Scholar
  193. Ruderman NB, Schneider SH, Berchtold P. The “metabolically-obese,” normal-weight individual. Am J Clin Nutr. 1981;34(8):1617–21.PubMedCrossRefGoogle Scholar
  194. Rue N, Vissing J, Galbo H. Insulin resistance and increased muscle cytokine levels in patients with mitochondrial myopathy. J Clin Endocrinol Metab. 2014;99(10):3757–65.PubMedCrossRefGoogle Scholar
  195. Sabatine MS, Giugliano RP, Wiviott SD, Raal FJ, Blom DJ, Robinson J, et al. Efficacy and safety of evolocumabin reducing lipids and cardiovascular events. N Engl J Med. 2015;372:1500–9.PubMedPubMedCentralCrossRefGoogle Scholar
  196. Samuel VT, Petersen KF, Shulman GI. Lipid-induced insulin resistance:unravelling the mechanism. Lancet. 2010;375(9733):2267–77.PubMedPubMedCentralCrossRefGoogle Scholar
  197. Samuel VT, Shulman GI. Mechanisms for insulin resistance: common threads and missing links. Cell. 2012;148(5):852–71.PubMedPubMedCentralCrossRefGoogle Scholar
  198. Samuel VT, Shulman GI. The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J Clin Invest. 2016;126(1):12–22.PubMedPubMedCentralCrossRefGoogle Scholar
  199. Sattar N, Gaw A, Scherbakova O, Ford I, O’Reilly DS, Haffner SM, Isles C, Macfarlane PW, Packard CJ, Cobbe SM, Shepherd J. Metabolic syndrome with and without C-reactive protein as a predictor of coronary heart disease and diabetes in the west of Scotland coronary prevention study. Circulation. 2003 Jul 29;108(4):414–9.PubMedCrossRefGoogle Scholar
  200. Schwarz JM, Linfoot P, Dare D, Aghajanian K. Hepatic de novo lipogenesis in normoinsulinemic and hyperinsulinemic subjects consuming high-fat, low-carbohydrate and low-fat, high-carbohydrate isoenergetic diets. Am J Clin Nutr. 2003;77(1):43–50.PubMedCrossRefGoogle Scholar
  201. Seidell JC, Bjorntorp P, Sjostrom L, Kvist H, Sannerstedt R, et al. Visceral fat accumulation in men is positively associated with insulin, glucose, and C-peptide levels, but negatively with testosterone levels. Metabolism. 1990;39(9):897–901.PubMedCrossRefGoogle Scholar
  202. Semple RK, Sleigh A, Murgatroyd PR, Adams CA, Bluck L, Jackson S, et al. Postreceptor insulin resistance contributes to human dyslipidemia and hepatic steatosis. J Clin Invest. 2009;119(2):315–22.PubMedPubMedCentralGoogle Scholar
  203. Shimabukuro M, Zhou YT, Levi M, Unger RH. Fatty acid-induced beta cell apoptosis: a link between obesity and diabetes. Proc Natl Acad Sci U S A. 1998;95(5):2498–502.PubMedPubMedCentralCrossRefGoogle Scholar
  204. Shimomura I, Matsuda M, Hammer RE, Bashmakov Y, Brown MS, Goldstein JL. Decreased IRS-2 and increased SREBP-1c lead to mixed insulin resistance and sensitivity in livers of lipodystrophic and Ob/Ob mice. Mol Cell. 2000;6(1):77–86.PubMedCrossRefGoogle Scholar
  205. Shinohara M, Thornalley PJ, Giardino I, Beisswenger P, Thorpe SR, Onorato J, et al. Overexpression of glyoxalase-I in bovine endothelial cells inhibits intracellular advanced glycation endproduct formation and prevents hyperglycemia-induced increases in macromolecular endocytosis. J Clin Invest. 1998;101(5):1142–7.PubMedPubMedCentralCrossRefGoogle Scholar
  206. Shulman GI. Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. N Engl J Med. 2014a;371(12):1131–41.PubMedCrossRefGoogle Scholar
  207. Shulman GI. Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. N Engl J Med. 2014b;371(23):2237–8.PubMedGoogle Scholar
  208. Simmons RK, Alberti KG, Gale EA, Colagiuri S, Tuomilehto J, Qiao Q, et al. The metabolic syndrome: useful concept or clinical tool? Report of a WHO expert consultation. Diabetologia. 2010;53(4):600–5.PubMedCrossRefGoogle Scholar
  209. Simoneau J-A, Kelley DE. Altered skeletal muscle glycolytic and oxidative capacities contribute to insulin resistance in NIDDM. J Appl Physiol. 1997;83:166–71.PubMedCrossRefGoogle Scholar
  210. Sinha R, Dufour S, Petersen KF, LeBon V, Enoksson S, Ma YZ, et al. Assessment of skeletal muscle triglyceride content by (1)H nuclear magnetic resonance spectroscopy in lean and obese adolescents: relationships to insulin sensitivity, total body fat, and central adiposity. Diabetes. 2002;51(4):1022–7.PubMedCrossRefGoogle Scholar
  211. Smedsrød B, Melkko J, Araki N, Sano H, Horiuchi S. Advanced glycation end products are eliminated by scavenger-receptor-mediated endocytosis in hepatic sinusoidal Kupffer and endothelial cells. Biochem J. 1997;322(Pt 2):567–73.PubMedPubMedCentralCrossRefGoogle Scholar
  212. SPRINT Research Group, Wright JT Jr, Williamson JD, Whelton PK, Snyder JK, Sink KM, Rocco MV, Reboussin DM, Rahman M, Oparil S, Lewis CE, Kimmel PL, Johnson KC, Goff DC Jr, Fine LJ, Cutler JA, Cushman WC, Cheung AK, Ambrosius WT. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med. 2015 Nov 26;373(22):2103–16.CrossRefGoogle Scholar
  213. Standl E, Erbach M, Schnell O. What should be the anti-hypertensive drug of choice in diabetic patients and should we avoid drugs that increase glucose levels? Pro and cons. Diabetes Metab Res Rev. 2012;28(Suppl 2):60–6.PubMedCrossRefGoogle Scholar
  214. Stanhope KL, Bremer AA, Medici V, Nakajima K, Ito Y, Nakano T, et al. Consumption of fructose and high fructose corn syrup increase postprandial triglycerides, LDL-cholesterol, and apolipoprotein-B in young men and women. J Clin Endocrinol Metab. 2011;96(10):E1596–605.PubMedPubMedCentralCrossRefGoogle Scholar
  215. Stanhope KL, Schwarz JM, Havel PJ. Adverse metabolic effects of dietary fructose: results from the recent epidemiological, clinical, and mechanistic studies. Curr Opin Lipidol. 2013;24(3):198–206.PubMedPubMedCentralCrossRefGoogle Scholar
  216. Stanhope KL, Schwarz JM, Keim NL, Griffen SC, Bremer AA, Graham JL, et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest. 2009;119(5):1322–34.PubMedPubMedCentralCrossRefGoogle Scholar
  217. Stein DT, Esser V, Stevenson BE, Lane KE, Whiteside JH, Daniels MB, et al. Essentiality of circulating fatty acids for glucose-stimulated insulin secretion in the fasted rat. J Clin Invest. 1996;97(12):2728–35.PubMedPubMedCentralCrossRefGoogle Scholar
  218. Steinberg GR, Kemp BE. AMPK in health and disease. Physiol Rev. 2009;89(3):1025–78.PubMedCrossRefGoogle Scholar
  219. Stirnadel H, Lin X, Ling H, Song K, Barter P, Kesaniemi YA, et al. Genetic and phenotypic architecture of metabolic syndrome-associated components in dyslipidemic and normolipidemic subjects: the GEMS study. Atherosclerosis. 2008;197(2):868–76.PubMedCrossRefGoogle Scholar
  220. Swinburn BA, Sacks G, Lo SK, Westerterp KR, Rush EC, Rosenbaum M, et al. Estimating the changes in energy flux that characterize the rise in obesity prevalence. Am J Clin Nutr. 2009;89:1723–8.PubMedPubMedCentralCrossRefGoogle Scholar
  221. Szczepaniak LS, Victor RG, Mathur R, Nelson MD, Szczepaniak EW, Tyer N, et al. Pancreatic steatosis and its relationship to β-cell dysfunction in humans: racial and ethnic variations. Diabetes Care. 2012;35(11):2377–83.PubMedPubMedCentralCrossRefGoogle Scholar
  222. Szendroedi J, Yoshimura T, Phielix E, Koliaki C, Marcucci M, Zhang D, et al. Role of diacylglycerol activation of PKCθ in lipid-induced muscle insulin resistance in humans. Proc Natl Acad Sci U S A. 2014;111(26):9597–602.PubMedPubMedCentralCrossRefGoogle Scholar
  223. Tan GD, Goossens GH, Humphreys SM, Vidal H, Karpe F. Upper and lower body adipose tissue function: a direct comparison of fat mobilization in humans. Obes Res. 2004;12(1):114–8.PubMedCrossRefGoogle Scholar
  224. Tappy L, Lê KA. Metabolic effects of fructose and the worldwide increase in obesity. Physiol Rev. 2010;90(1):23–46.PubMedCrossRefGoogle Scholar
  225. Tardif JC, L’allier PL, Ibrahim R, Grégoire JC, Nozza A, Cossette M, et al. Treatment with 5-lipoxygenase inhibitor VIA-2291 (Atreleuton) in patients with recent acute coronary syndrome. Circ Cardiovasc Imaging. 2010;3:298–307.PubMedCrossRefGoogle Scholar
  226. Tchernof A, Després JP. Pathophysiology of human visceral obesity: an update. Physiol Rev. 2013;93:359–404.PubMedCrossRefPubMedCentralGoogle Scholar
  227. Thomas F, Smith GC, Lu J, Babor R, Booth M, Beban G, et al. Differential acute impacts of sleeve gastrectomy, roux-en-Y gastric bypass surgery and matched caloric restriction diet on insulin secretion, insulin effectiveness and non-esterified fatty acid levels among patients with type 2 diabetes. Obes Surg. 2016.  https://doi.org/10.1007/s11695-015-2038-3.PubMedCrossRefPubMedCentralGoogle Scholar
  228. Toth PP. Triglyceride-rich lipoproteins as a causal factor for cardiovascular disease. Vasc Health Risk Manag. 2016;12:171–83.PubMedPubMedCentralCrossRefGoogle Scholar
  229. Tuck ML, Sowers J, Dornfeld L, Kledzik G, Maxwell M. The effect of weight reduction on blood pressure, plasma renin activity, and plasma aldosterone levels in obese patients. N Engl J Med. 1981;304:930–3.CrossRefGoogle Scholar
  230. Tulloch-Reid MK, Williams DE, Looker HC, Hanson RL, Knowler WC. Do measures of body fat distribution provide information on the risk of type 2 diabetes in addition to measures of general obesity? Comparison of anthropometric predictors of type 2 diabetes in pima Indians. Diabetes Care. 2003;26:2556–61.PubMedCrossRefPubMedCentralGoogle Scholar
  231. Unger RH, Zhou YT. Lipotoxicity of beta-cells in obesity and in other causes of fatty acid spillover. Diabetes. 2001;50(Suppl 1):S118–21.PubMedCrossRefPubMedCentralGoogle Scholar
  232. US Preventive Services Task Force. Aspirin for the prevention of cardiovascular disease: U.S. preventive services task force recommendation statement. Ann Intern Med. 2009;150:396–404.CrossRefGoogle Scholar
  233. Uyeda K, Yamashita H, Kawaguchi T. Carbohydrate responsive element-binding protein (ChREBP): a key regulator of glucose metabolism and fat storage. Biochem Pharmacol. 2002;63(12):2075–80.PubMedCrossRefPubMedCentralGoogle Scholar
  234. van Loon LJ, Koopman R, Manders R, van der Weegen W, van Kranenburg GP, Keizer HA. Intramyocellular lipid content in type 2 diabetes patients compared with overweight sedentary men and highly trained endurance athletes. Am J Physiol Endocrinol Metab. 2004;287(3):E558–65.PubMedCrossRefPubMedCentralGoogle Scholar
  235. Vatner DF, Majumdar SK, Kumashiro N, Petersen MC, Rahimi Y, Gattu AK, et al. Insulin-independent regulation of hepatic triglyceride synthesis by fatty acids. Proc Natl Acad Sci U S A. 2015;112(4):1143–8.PubMedPubMedCentralCrossRefGoogle Scholar
  236. Vega GL, Adams-Huet B, Peshock R, Willett D, Shah B, Grundy SM. Influence of body fat content and distribution on variation in metabolic risk. J Clin Endocrinol Metab. 2006;91(11):4459–66.PubMedCrossRefGoogle Scholar
  237. Vega GL, Chandalia M, Szczepaniak LS, Grundy SM. Metabolic correlates of nonalcoholic fatty liver in women and men. Hepatology. 2007;46(3):716–22.PubMedCrossRefGoogle Scholar
  238. Vinik A, Flemmer M. Diabetes and macrovascular disease. J Diabetes Complicat. 2002;16(3):235–45.PubMedCrossRefGoogle Scholar
  239. Vlassara H, Li YM, Imani F, Wojciechowicz D, Yang Z, Liu FT, et al. Identification of galectin-3 as a high-affinity binding protein for advanced glycation end products (AGE): a new member of the AGE-receptor complex. Mol Med. 1995;1(6):634–46.PubMedPubMedCentralCrossRefGoogle Scholar
  240. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112:1796–808.PubMedPubMedCentralCrossRefGoogle Scholar
  241. Welle S, Forbes GB, Statt M, Barnard RR, Amatruda JM. Energy expenditure under free-living conditions in normal-weight and overweight women. Am J Clin Nutr. 1992;55:14–21.PubMedCrossRefPubMedCentralGoogle Scholar
  242. Wilhelm SM, Young J, Kale-Pradhan PB. Effect of bariatric surgery on hypertension: a meta-analysis. Ann Pharmaco Ther. 2014;48:674–82.CrossRefGoogle Scholar
  243. Williams KJ, Tabas I. The response-to-retention hypothesis of early atherogenesis. Arterioscler Thromb Vasc Biol. 1995;15(5):551–61.PubMedPubMedCentralCrossRefGoogle Scholar
  244. Winder WW, Arogyasami J, Elayan IM, Cartmill D. Time course of exercise-induce decline in malonyl-CoA in different muscle types. Am J Physiol Endocrinol Metab. 1990;259:E266–71.CrossRefGoogle Scholar
  245. Winder WW, Holmes BF, Rubink DS, Jensen EB, Chen M, Holloszy JO. Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle. J Appl Physiol. 2000;88:2219–26.PubMedCrossRefPubMedCentralGoogle Scholar
  246. Wolfe RR. Metabolic interactions between glucose and fatty acids in humans. Am J Clin Nutr. 1998;67(3 Suppl):519S–26S.PubMedCrossRefPubMedCentralGoogle Scholar
  247. Wu FZ, Wu CC, Kuo PL, Wu MT. Differential impacts of cardiac and abdominal ectopic fat deposits on cardiometabolic risk stratification. BMC Cardiovasc Disord. 2016;16:20.PubMedPubMedCentralCrossRefGoogle Scholar
  248. Ye R, Ni M, Wang M, Luo S, Zhu G, Chow RH, et al. Inositol 1,4,5-trisphosphate receptor 1 mutation perturbs glucose homeostasis and enhances susceptibility to diet-induced diabetes. J Endocrinol. 2011;210(2):209–17.PubMedPubMedCentralCrossRefGoogle Scholar
  249. Zheng D, MacLean PS, Pohnert SC, Knight JB, Olson AL, Winder WW, et al. Regulation of muscle GLUT-4 transcription by AMP-activated protein kinase. J Appl Physiol. 2001;91:1073–83.PubMedCrossRefGoogle Scholar
  250. Zreikat HH, Harpe SE, Slattum PW, Mays DP, Essah PA, Cheang KI. Effect of renin–angiotensin system inhibition on cardiovascular events in older hypertensive patients with metabolic syndrome. Metabolism. 2014;63:392–9.PubMedCrossRefGoogle Scholar
  251. Zurlo F, Larson K, Bogardus C, Ravussin E. Skeletal muscle metabolism is a major determinant of resting energy expenditure. J Clin Invest. 1990;86(5):1423–7.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018

Authors and Affiliations

  1. 1.Center for Human Nutrition and Department of Internal MedicineUT Southwestern Medical CenterDallasUSA
  2. 2.Veterans Affairs Medical CenterDallasUSA

Personalised recommendations