Advertisement

Spin Excitations in Solid from Many-Body Perturbation Theory

  • Christoph FriedrichEmail author
  • Mathias C. T. D. Müller
  • Stefan Blügel
Living reference work entry

Latest version View entry history

Abstract

Electronic spin excitations are low-energy excitations that influence the properties of magnetic materials substantially. Two types of spin excitations can be identified, single-particle Stoner excitations and collective spin-wave excitations. They can be treated on the same footing within many-body perturbation theory. In this theory, the collective spin excitations arise from the correlated motion of electron-hole pairs with opposite spins. We present the theory in detail and discuss several aspects of an implementation within the full-potential linearized augmented plane-wave method. The pair propagation is described by the transverse magnetic susceptibility, which we calculate from first principles employing the ladder approximation for the T matrix. The four-point T matrix is represented in a basis of Wannier functions. By using an auxiliary Wannier set with suitable Bloch character, the magnetic response function can be evaluated for arbitrary k points, allowing fine details of the spin-wave spectra to be studied. The energy of the acoustic spin-wave branch should vanish in the limit k →0, which is a manifestation of the Goldstone theorem. However, this condition is often violated in the calculated acoustic magnon dispersion, which can partly be traced back to the choice of the Green function. In fact, the numerical gap error is considerably reduced when a renormalized Green function is used. As an alternative simple correction scheme, we suggest an adjustment of the Kohn-Sham exchange splitting. We present spin excitation spectra for the elementary ferromagnets Fe, Co, and Ni as illustrative examples and compare to model calculations of the homogeneous electron gas.

References

  1. Aryasetiawan F, Karlsson K (1999) Green’s function formalism for calculating spin-wave spectra. Phys Rev B 60:7419–7428. http://link.aps.org/doi/10.1103/PhysRevB.60.7419ADSGoogle Scholar
  2. Baym G (1962) Self-consistent approximations in many-body systems. Phys Rev 127(4):1391–1401. http://link.aps.org/doi/10.1103/PhysRev.127.1391ADSMathSciNetzbMATHGoogle Scholar
  3. Baym G, Kadanoff LP (1961) Conservation laws and correlation functions. Phys Rev 124(2):287–299. http://link.aps.org/doi/10.1103/PhysRev.124.287ADSMathSciNetzbMATHGoogle Scholar
  4. Blackman JA, Morgan T, Cooke JF (1985) Prediction of high-energy spin-wave excitation in iron. Phys Rev Lett 55:2814–2817. http://link.aps.org/doi/10.1103/PhysRevLett.55.2814ADSGoogle Scholar
  5. Bloch F (1930) Zur theorie des ferromagnetismus. Zeitschrift für Physik 61(3):206–219. https://doi.org/10.1007/BF01339661ADSzbMATHGoogle Scholar
  6. Bonnenberg D, Hempel K, Wijn H (1986) 3D, 4D and 5D elements, alloys and compounds. In: Wijn HP, Landolt H, Börnstein R (eds) Magnetic properties in metals, new series, vol III. Springer, Berlin. https://doi.org/10.1007/b29710, http://materials.springer.com/bp/docs/978-13-540-39667-3?utm_campaign=bookshelf-experiment&utm_medium=xls&utm_source=staticpageGoogle Scholar
  7. Brandt U (1971) Modified t-matrix approximation in itinerant ferromagnets. Zeitschrift für Physik 244(3):217–229. https://doi.org/10.1007/BF01395567ADSGoogle Scholar
  8. Brandt U, Pesch W, Tewordt L (1970) Self-consistent approximations for itinerant ferromagnets above the phase transition point. Zeitschrift für Physik 238(2):121–129. https://doi.org/10.1007/BF01399298ADSGoogle Scholar
  9. Brandt U, Lustfeld H, Pesch W, Tewordt L (1971) Self-consistent approximations for itinerant ferromagnetism below the phase-transition point. J Low Temp Phys 4(1):79–95. https://doi.org/10.1007/BF00628439ADSGoogle Scholar
  10. Buczek P (2009) Spin dynamics of complex itinerant magnets. Ph.D., thesis, Martin-Luther-Universität Halle WittenbergGoogle Scholar
  11. Buczek P, Ernst A, Bruno P, Sandratskii LM (2009) Energies and lifetimes of magnons in complex ferromagnets: a first-principle study of Heusler alloys. Phys Rev Lett 102:247206. http://link.aps.org/doi/10.1103/PhysRevLett.102.247206ADSGoogle Scholar
  12. Buczek P, Ernst A, Sandratskii LM (2010) Standing spin waves as a basis for the control of terahertz spin dynamics: time dependent density functional theory study. Phys Rev Lett 105:097205. http://link.aps.org/doi/10.1103/PhysRevLett.105.097205ADSGoogle Scholar
  13. Buczek P, Ernst A, Sandratskii LM (2011) Interface electronic complexes and landau damping of magnons in ultrathin magnets. Phys Rev Lett 106:157204. http://link.aps.org/doi/10.1103/PhysRevLett.106.157204ADSGoogle Scholar
  14. Callaway J, Chatterjee AK, Singhal SP, Ziegler A (1983) Magnetic susceptibility of ferromagnetic metals: application to nickel. Phys Rev B 28:3818ADSGoogle Scholar
  15. Collins MF, Minkiewicz VJ, Nathans R, Passell L, Shirane G (1969) Critical and spin-wave scattering of neutrons from iron. Phys Rev 179:417–430. https://link.aps.org/doi/10.1103/PhysRev.179.417ADSGoogle Scholar
  16. Cooke JF (1973) Neutron scattering from itinerant-electron ferromagnets. Phys Rev B 7:1108–1116. http://link.aps.org/doi/10.1103/PhysRevB.7.1108ADSGoogle Scholar
  17. Cooke JF (1976) Magnetic excitations in itinerant electron systems. In: Moon RM (ed), Proceedings of the conference on neutron scattering. NTIS, Springfield, VA, 2:723Google Scholar
  18. Cooke JF, Lynn JW, Davis HL (1980) Calculations of the dynamic susceptibility of nickel and iron. Phys Rev B 21:4118–4131. http://link.aps.org/doi/10.1103/PhysRevB.21.4118ADSGoogle Scholar
  19. Cooke JF, Blackman JA, Morgan T (1985) New interpretation of spin-wave behavior in nickel. Phys Rev Lett 54:718–721. http://link.aps.org/doi/10.1103/PhysRevLett.54.718ADSGoogle Scholar
  20. Dagotto E (1994) Correlated electrons in high-temperature superconductors. Rev Mod Phys 66:763–840. http://link.aps.org/doi/10.1103/RevModPhys.66.763ADSGoogle Scholar
  21. Doniach S, Engelsberg S (1966) Low-temperature properties of nearly ferromagnetic fermi liquids. Phys Rev Lett 17:750–753. http://link.aps.org/doi/10.1103/PhysRevLett.17.750ADSGoogle Scholar
  22. Eastman DE, Himpsel FJ, Knapp JA (1980) Experimental exchange-split energy-band dispersions for Fe, Co, and Ni. Phys Rev Lett 44:95–98. http://link.aps.org/doi/10.1103/PhysRevLett.44.95ADSGoogle Scholar
  23. Edwards DM, Hertz JA (1973) Electron-magnon interactions in itinerant ferromagnetism. II. Strong ferromagnetism. J Phys F Metal Phys 3(12):2191. http://stacks.iop.org/0305-4608/3/i=12/a=019ADSGoogle Scholar
  24. Faleev SV, van Schilfgaarde M, Kotani T (2004) All-electron self-consistent gw approximation: application to Si, MnO, and NiO. Phys Rev Lett 93:126406. http://link.aps.org/doi/10.1103/PhysRevLett.93.126406ADSGoogle Scholar
  25. Freimuth F, Mokrousov Y, Wortmann D, Heinze S, Blügel S (2008) Maximally localized Wannier functions within the FLAPW formalism. Phys Rev B 78:035120. http://link.aps.org/doi/10.1103/PhysRevB.78.035120ADSGoogle Scholar
  26. Friedrich C, Blugel S, Schindlmayr A (2009) Efficient calculation of the coulomb matrix and its expansion around k = 0 within the FLAPW method. Comput Phys Commun 180:347ADSMathSciNetzbMATHGoogle Scholar
  27. Friedrich C, Blügel S, Schindlmayr A (2010) Efficient implementation of the gw approximation within the all-electron FLAPW method. Phys Rev B 81:125102. http://link.aps.org/doi/10.1103/PhysRevB.81.125102ADSGoogle Scholar
  28. Friedrich C, Şaşıoğlu E, Müller M, Schindlmayr A, Blügel S (2014) Spin excitations in solids from many-body perturbation theory. In: Di Valentin C, Botti S, Cococcioni M (eds) First principles approaches to spectroscopic properties of complex materials, topics in current chemistry, vol 347. Springer, Berlin/Heidelberg, pp 259–301. https://doi.org/10.1007/128_2013_518Google Scholar
  29. Frikkee E (1966) Inelastic scattering of neutrons by spin waves in F.C.C. cobalt. Physica 32(11):2149–2160ADSGoogle Scholar
  30. Glinka CJ, Minkiewicz VJ, Passell L (1977) Small-angle critical neutron scattering from cobalt. Phys Rev B 16:4084–4103. https://link.aps.org/doi/10.1103/PhysRevB.16.4084ADSGoogle Scholar
  31. Halilov SV, Perlov AY, Oppeneer PM, Eschrig H (1997) Magnon spectrum and related finite-temperature magnetic properties: a first-principle approach. EPL (Europhys Lett) 39(1):91. http://stacks.iop.org/0295-5075/39/i=1/a=091ADSGoogle Scholar
  32. Hedin L (1965) New method for calculating the one-particle green’s function with application to the electron-gas problem. Phys Rev 139:A796–A823. http://link.aps.org/doi/10.1103/PhysRev.139.A796ADSGoogle Scholar
  33. Hedin L (1999) On correlation effects in electron spectroscopies and the GW approximation. J Phys Condens Matter 11(42):R489. http://stacks.iop.org/0953-8984/11/i=42/a=201ADSGoogle Scholar
  34. Hertz JA, Edwards DM (1973) Electron-magnon interactions in itinerant ferromagnetism. I. Formal theory. J Phys F Metal Phys 3(12):2174. http://stacks.iop.org/0305-4608/3/i=12/a=018ADSGoogle Scholar
  35. Himpsel FJ, Eastman DE (1980) Experimental energy-band dispersions and magnetic exchange splitting for cobalt. Phys Rev B 21:3207–3213. http://link.aps.org/doi/10.1103/PhysRevB.21.3207ADSGoogle Scholar
  36. Hofmann A, Cui XY, Schäfer J, Meyer S, Höpfner P, Blumenstein C, Paul M, Patthey L, Rotenberg E, Bünemann J, Gebhard F, Ohm T, Weber W, Claessen R (2009) Renormalization of bulk magnetic electron states at high binding energies. Phys Rev Lett 102:187204. http://link.aps.org/doi/10.1103/PhysRevLett.102.187204ADSGoogle Scholar
  37. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871. http://link.aps.org/doi/10.1103/PhysRev.136.B864ADSMathSciNetGoogle Scholar
  38. Hong J, Mills DL (1999) Theory of the spin dependence of the inelastic mean free path of electrons in ferromagnetic metals: a model study. Phys Rev B 59:13840–13848. http://link.aps.org/doi/10.1103/PhysRevB.59.13840ADSGoogle Scholar
  39. Hong J, Mills DL (2000) Spin dependence of the inelastic electron mean free path in Fe and Ni: explicit calculations and implications. Phys Rev B 62:5589–5600. https://link.aps.org/doi/10.1103/PhysRevB.62.5589ADSGoogle Scholar
  40. Janak J (1978) Itinerant ferromagnetism in fcc cobalt. Solid State Commun 25(2):53–55. https://doi.org/10.1016/0038-1098(78)90354-X, http://www.sciencedirect.com/science/article/pii/003810987890354XADSGoogle Scholar
  41. Karlsson K, Aryasetiawan F (2000) A many-body approach to spin-wave excitations in itinerant magnetic systems. J Phys Condens Matter 12(34):7617. http://stacks.iop.org/0953-8984/12/i=34/a=308ADSGoogle Scholar
  42. Khitun A, Wang KL (2005) Nano scale computational architectures with spin wave bus. Superlattice Microst 38(3):184–200. https://doi.org/10.1016/j.spmi.2005.07.001, http://www.sciencedirect.com/science/article/pii/S0749603605000716ADSGoogle Scholar
  43. Kisker E, Schröder K, Gudat W, Campagna M (1985) Spin-polarized angle-resolved photoemission study of the electronic structure of Fe(100) as a function of temperature. Phys Rev B 31:329–339. http://link.aps.org/doi/10.1103/PhysRevB.31.329ADSGoogle Scholar
  44. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138. http://link.aps.org/doi/10.1103/PhysRev.140.A1133ADSMathSciNetGoogle Scholar
  45. Kotani T, van Schilfgaarde M (2008) Spin wave dispersion based on the quasiparticle self-consistent GW method: NiO, MnO and α-MNAS. J Phys Condens Matter 20(29):295214. http://stacks.iop.org/0953-8984/20/i=29/a=295214Google Scholar
  46. Kübler J (2009) Theory of itinerant electron magnetism. International series of monographs on physics. OUP, Oxford. https://books.google.de/books?id=ZbM0gHCcmaQCGoogle Scholar
  47. Loong CK, Carpenter JM, Lynn JW, Robinson RA, Mook HA (1984) Neutron scattering study of the magnetic excitations in ferromagnetic iron at high energy transfers. J Appl Phys 55(6):1895–1897. https://doi.org/10.1063/1.333511ADSGoogle Scholar
  48. Lounis S, Costa AT, Muniz RB, Mills DL (2010) Dynamical magnetic excitations of nanostructures from first principles. Phys Rev Lett 105:187205. http://link.aps.org/doi/10.1103/PhysRevLett.105.187205ADSGoogle Scholar
  49. Lounis S, Costa AT, Muniz RB, Mills DL (2011) Theory of local dynamical magnetic susceptibilities from the Korringa-Kohn-Rostoker Green function method. Phys Rev B 83:035109. http://link.aps.org/doi/10.1103/PhysRevB.83.035109ADSGoogle Scholar
  50. Lowde RD, Moon RM, Pagonis B, Perry CH, Sokoloff JB, Vaughan-Watkins RS, Wiltshire MCK, Crangle J (1983) A polarised-neutron scattering demonstration of deviations from stoner-theory behaviour in nickel. J Phys F Metal Phys 13(2):249. http://stacks.iop.org/0305-4608/13/i=2/a=004ADSGoogle Scholar
  51. Lynn JW (1975) Temperature dependence of the magnetic excitations in iron. Phys Rev B 11:2624–2637. http://link.aps.org/doi/10.1103/PhysRevB.11.2624ADSGoogle Scholar
  52. Mahan GD (2000) Many particle physics, 3rd edn. Plenum, New YorkGoogle Scholar
  53. Marzari N, Vanderbilt D (1997) Maximally localized generalized Wannier functions for composite energy bands. Phys Rev B 56:12847–12865. http://link.aps.org/doi/10.1103/PhysRevB.56.12847ADSGoogle Scholar
  54. Mermin ND, Wagner H (1966) Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys Rev Lett 17:1133–1136. https://link.aps.org/doi/10.1103/PhysRevLett.17.1133ADSGoogle Scholar
  55. Minkiewicz VJ, Collins MF, Nathans R, Shirane G (1969) Critical and spin-wave fluctuations in nickel by neutron scattering. Phys Rev 182:624–631. https://link.aps.org/doi/10.1103/PhysRev.182.624ADSGoogle Scholar
  56. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192. http://link.aps.org/doi/10.1103/PhysRevB.13.5188ADSMathSciNetGoogle Scholar
  57. Mook HA, Nicklow RM (1973) Neutron scattering investigation of the magnetic excitations in iron. Phys Rev B 7:336–342. https://link.aps.org/doi/10.1103/PhysRevB.7.336ADSGoogle Scholar
  58. Mook HA, Paul DM (1985) Neutron-scattering measurement of the spin-wave spectra for nickel. Phys Rev Lett 54:227–229. http://link.aps.org/doi/10.1103/PhysRevLett.54.227ADSGoogle Scholar
  59. Mook HA, Tocchetti D (1979) Neutron-scattering measurements of the generalized susceptibility χ(q, e) for Ni. Phys Rev Lett 43:2029–2032. https://link.aps.org/doi/10.1103/PhysRevLett.43.2029ADSGoogle Scholar
  60. Moriya T (1985) Spin fluctuations in itinerant electron magnetism. Springer series in solid state sciences, vol 56. Springer, Berlin/HeidelbergGoogle Scholar
  61. Moruzzi VL, Marcus PM, Schwarz K, Mohn P (1986) Ferromagnetic phases of BCC and fcc Fe, Co, and Ni. Phys Rev B 34:1784–1791. https://link.aps.org/doi/10.1103/PhysRevB.34.1784ADSGoogle Scholar
  62. Müller MCTD (2016) Spin-wave excitations and electron-magnon scattering in elementary ferromagnets from ab initio many-body perturbation theory. Ph.D., thesis, RWTH AachenGoogle Scholar
  63. Müller MCTD, Friedrich C, Blügel S (2016) Acoustic magnons in the long-wavelength limit: investigating the goldstone violation in many-body perturbation theory. Phys Rev B 94:064433. https://link.aps.org/doi/10.1103/PhysRevB.94.064433ADSGoogle Scholar
  64. Müller MCTD, Blügel S, Friedrich C (In Review) Electron-magnon scattering in elementary ferromagnets from first principles: lifetime broadening and kinks. Phys Rev BGoogle Scholar
  65. Paul DM, Mitchell PW, Mook HA, Steigenberger U (1988) Observation of itinerant-electron effects on the magnetic excitations of iron. Phys Rev B 38:580–582. https://link.aps.org/doi/10.1103/PhysRevB.38.580ADSGoogle Scholar
  66. Rath J, Freeman AJ (1975) Generalized magnetic susceptibilities in metals: application of the analytic tetrahedron linear energy method to SC. Phys Rev B 11:2109–2117. http://link.aps.org/doi/10.1103/PhysRevB.11.2109ADSGoogle Scholar
  67. Raue R, Hopster H, Clauberg R (1984) Spin-polarized photoemission study on the temperature dependence of the exchange splitting of Ni. Zeitschrift für Physik B Condens Matter 54(2):121–128. https://doi.org/10.1007/BF01388063ADSGoogle Scholar
  68. Rosengaard NM, Johansson B (1997) Finite-temperature study of itinerant ferromagnetism in Fe, Co, and Ni. Phys Rev B 55:14975–14986. https://link.aps.org/doi/10.1103/PhysRevB.55.14975ADSGoogle Scholar
  69. Rousseau B, Eiguren A, Bergara A (2012) Efficient computation of magnon dispersions within time-dependent density functional theory using maximally localized Wannier functions. Phys Rev B 85:054305. http://link.aps.org/doi/10.1103/PhysRevB.85.054305ADSGoogle Scholar
  70. Runge E, Gross EKU (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52:997–1000. http://link.aps.org/doi/10.1103/PhysRevLett.52.997ADSGoogle Scholar
  71. Sakisaka Y, Rhodin T, Mueller D (1985) Angle-resolved photoemission from Fe(110): determination of E(). Solid State Commun 53(9):793–799. https://doi.org/10.1016/0038-1098(85)90221-2, http://www.sciencedirect.com/science/article/pii/0038109885902212ADSGoogle Scholar
  72. Santoni A, Himpsel FJ (1991) Unoccupied energy bands, exchange splitting, and self-energy of iron. Phys Rev B 43:1305–1312. http://link.aps.org/doi/10.1103/PhysRevB.43.1305ADSGoogle Scholar
  73. Şaşıoğlu E, Schindlmayr A, Friedrich C, Freimuth F, Blügel S (2010) Wannier-function approach to spin excitations in solids. Phys Rev B 81:054434. http://link.aps.org/doi/10.1103/PhysRevB.81.054434ADSGoogle Scholar
  74. Şaşıoğlu E, Friedrich C, Blügel S (2013) Strong magnon softening in tetragonal FeCo compounds. Phys Rev B 87:020410. http://link.aps.org/doi/10.1103/PhysRevB.87.020410ADSGoogle Scholar
  75. Savrasov SY (1998) Linear response calculations of spin fluctuations. Phys Rev Lett 81:2570–2573. http://link.aps.org/doi/10.1103/PhysRevLett.81.2570ADSGoogle Scholar
  76. Scalapino D (1995) The case for \(d_{x^2-y^2}\) pairing in the cuprate superconductors. Phys Rep 250(6):329–365. https://doi.org/10.1016/0370-1573(94)00086-I, http://www.sciencedirect.com/science/article/pii/037015739400086IADSGoogle Scholar
  77. Schäfer J, Schrupp D, Rotenberg E, Rossnagel K, Koh H, Blaha P, Claessen R (2004) Electronic quasiparticle renormalization on the spin wave energy scale. Phys Rev Lett 92:097205. http://link.aps.org/doi/10.1103/PhysRevLett.92.097205ADSGoogle Scholar
  78. Souza I, Marzari N, Vanderbilt D (2001) Maximally localized Wannier functions for entangled energy bands. Phys Rev B 65:035109. http://link.aps.org/doi/10.1103/PhysRevB.65.035109ADSGoogle Scholar
  79. Stearns MB (1986) 3D, 4D and 5D elements, alloys and compounds. In: Wijn H, Landolt H, Börnstein R (eds) Magnetic properties in metals. New series, vol III. Springer, Berlin. https://doi.org/10.1007/b29710, http://materials.springer.com/bp/docs/978-3-540-39667-3?utm_campaign=bookshelf-experiment&utm_medium=xls&utm_source=staticpageGoogle Scholar
  80. Strinati G (1988) Application of the green’s functions method to the study of the optical properties of semiconductors. La Rivista del Nuovo Cimento 11(12):1–86. https://doi.org/10.1007/BF02725962ADSGoogle Scholar
  81. Tang H, Plihal M, Mills D (1998) Theory of the spin dynamics of bulk fe and ultrathin Fe(100) films. J Magn Magn Mater 187(1):23–46. https://doi.org/10.1016/S0304-8853(98)00088-2, http://www.sciencedirect.com/science/article/pii/S0304885398000882ADSGoogle Scholar
  82. Turner AM, Donoho AW, Erskine JL (1984) Experimental bulk electronic properties of ferromagnetic iron. Phys Rev B 29:2986–3000. http://link.aps.org/doi/10.1103/PhysRevB.29.2986ADSGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Christoph Friedrich
    • 1
    Email author
  • Mathias C. T. D. Müller
    • 1
  • Stefan Blügel
    • 1
  1. 1.Peter Grünberg Institut and Institute for Advanced SimulationForschungszentrum Jülich and JARAJülichGermany

Section editors and affiliations

  • S. Sanvito
    • 1
  1. 1.School of Physics and CRANN InstituteTrinity CollegeDublinIreland

Personalised recommendations