Quantum Machine Learning in Chemistry and Materials

  • Bing Huang
  • Nadine O. Symonds
  • O. Anatole von LilienfeldEmail author
Living reference work entry


Within the past few years, we have witnessed the rising of quantum machine learning (QML) models which infer electronic properties of molecules and materials, rather than solving approximations to the electronic Schrödinger equation. The increasing availability of large quantum mechanics reference datasets has enabled these developments. We review the basic theories and key ingredients of popular QML models such as choice of regressor, data of varying trustworthiness, the role of the representation, and the effect of training set selection. Throughout we emphasize the indispensable role of learning curves when it comes to the comparative assessment of different QML models.



We acknowledge support by the Swiss National Science foundation (No. PP00P2_138932, 407540_167186 NFP 75 Big Data, 200021_175747, NCCR MARVEL).


  1. Axilrod BM, Teller E (1943) Interaction of the van der Waals type between three atoms. J Chem Phys 11(6):299–300.,
  2. Bader RF (1990) Atoms in molecules: a quantum theory. Clarendon Press, OxfordGoogle Scholar
  3. Bartók AP, Payne MC, Kondor R, Csányi G (2010) Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys Rev Lett 104:136403.
  4. Bartók AP, Kondor R, Csányi G (2013) On representing chemical environments. Phys Rev B 87:184115.
  5. Bartók AP, De S, Poelking C, Bernstein N, Kermode JR, Csányi G, Ceriotti M (2017) Machine learning unifies the modeling of materials and molecules. Sci Adv 3(12).,
  6. Browning NJ, Ramakrishnan R, von Lilienfeld OA, Roethlisberger U (2017) Genetic optimization of training sets for improved machine learning models of molecular properties. J Phys Chem Lett 8(7):1351.
  7. Csányi G, Albaret T, Payne MC, Vita AD (2004) “Learn on the fly”: a hybrid classical and quantum-mechanical molecular dynamics simulation. Phys Rev Lett 93:175503Google Scholar
  8. De S, Bartok AP, Csanyi G, Ceriotti M (2016) Comparing molecules and solids across structural and alchemical space. Phys Chem Chem Phys 18:13754–13769.
  9. Faber FA, Christensen AS, Huang B, von Lilienfeld OA (2017a) Alchemical and structural distribution based representation for improved QML. arXiv preprint arXiv:171208417Google Scholar
  10. Faber FA, Hutchison L, Huang B, Gilmer J, Schoenholz SS, Dahl GE, Vinyals O, Kearnes S, Riley PF, von Lilienfeld OA (2017b) Fast machine learning models of electronic and energetic properties consistently reach approximation errors better than dft accuracy.
  11. Fasshauer G, McCourt M (2016) Kernel-based approximation methods using Matlab. World Scientific, New JerseyGoogle Scholar
  12. Fias S, Heidar-Zadeh F, Geerlings P, Ayers PW (2017) Chemical transferability of functional groups follows from the nearsightedness of electronic matter. Proc Natl Acad Sci 114(44):11633–11638Google Scholar
  13. Ghiringhelli LM, Vybiral J, Levchenko SV, Draxl C, Scheffler M (2015) Big data of materials science: critical role of the descriptor. Phys Rev Lett 114:105503.
  14. Greeley J, Jaramillo TF, Bonde J, Chorkendorff I, Nørskov JK (2006) Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater 5(11): 909–913Google Scholar
  15. Hansen K, Biegler F, von Lilienfeld OA, Müller KR, Tkatchenko A (2015) Interaction potentials in molecules and non-local information in chemical space. J Phys Chem Lett 6:2326.
  16. Huang B, von Lilienfeld OA (2016) Communication: understanding molecular representations in machine learning: the role of uniqueness and target similarity. J Chem Phys 145(16):161102.
  17. Huang B, von Lilienfeld OA (2017) Chemical space exploration with molecular genes and machine learning. arXiv preprint arXiv:170704146Google Scholar
  18. Kennedy MC, O’Hagan A (2000) Predicting the output from a complex computer code when fast approximations are available. Biometrika 87(1):1–13Google Scholar
  19. Kirkpatrick P, Ellis C (2004) Chemical space. Nature 432(7019):823–823.
  20. Kitaura K, Ikeo E, Asada T, Nakano T, Uebayasi M (1999) Fragment molecular orbital method: an approximate computational method for large molecules. Chem Phys Lett 313(3–4):701–706.
  21. Muto Y (1943) Force between nonpolar molecules. J Phys-Math Soc Jpn 17:629–631Google Scholar
  22. Pilania G, Gubernatis JE, Lookman T (2017) Multi-fidelity machine learning models for accurate bandgap predictions of solids. Comput Mater Sci 129:156–163Google Scholar
  23. Podryabinkin EV, Shapeev AV (2017) Active learning of linearly parametrized interatomic potentials. Comput Mater Sci 140:171–180Google Scholar
  24. Prodan E, Kohn W (2005) Nearsightedness of electronic matter. Proc Natl Acad Sci USA 102(33):11635–11638.
  25. Ramakrishnan R, von Lilienfeld OA (2015) Many molecular properties from one kernel in chemical space. Chimia 69(4):182.,
  26. Ramakrishnan R, Dral P, Rupp M, von Lilienfeld OA (2014) Quantum chemistry structures and properties of 134 kilo molecules. Sci Data 1:140022.
  27. Ramakrishnan R, Dral P, Rupp M, von Lilienfeld OA (2015a) Big data meets quantum chemistry approximations: the Δ-machine learning approach. J Chem Theory Comput 11:2087–2096.
  28. Ramakrishnan R, Hartmann M, Tapavicza E, von Lilienfeld OA (2015b) Electronic spectra from TDDFT and machine learning in chemical space. J Chem Phys 143:084111.
  29. Rappe AK, Casewit CJ, Colwell KS, Goddard WA III, Skiff WM (1992) Uff, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114(25):10024–10035.
  30. Rasmussen C, Williams C (2006) Gaussian processes for machine learning. Adaptative computation and machine learning series. University Press Group Limited.
  31. Ruddigkeit L, van Deursen R, Blum LC, Reymond JL (2012) Enumeration of 166 billion organic small molecules in the chemical universe database gdb-17. J Chem Inf Model 52(11): 2864–2875.
  32. Rupp M, Tkatchenko A, Müller KR, von Lilienfeld OA (2012) Fast and accurate modeling of molecular atomization energies with machine learning. Phys Rev Lett 108(5):058301.
  33. Samuel AL (2000) Some studies in machine learning using the game of checkers. IBM J Res Dev 44(1.2):206–226Google Scholar
  34. Todeschini R, Consonni V (2008) Handbook of molecular descriptors, vol 11. Wiley, WeinheimGoogle Scholar
  35. von Lilienfeld OA (2018) Quantum machine learning in chemical compound space. Angew Chemie Int Ed.
  36. von Lilienfeld OA, Ramakrishnan R, Rupp M, Knoll A (2015) Fourier series of atomic radial distribution functions: a molecular fingerprint for machine learning models of quantum chemical properties. Int J Quantum Chem 115(16):1084–1093.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Bing Huang
    • 1
  • Nadine O. Symonds
    • 1
  • O. Anatole von Lilienfeld
    • 1
    Email author
  1. 1.Department of Chemistry, Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials (MARVEL)University of BaselBaselSwitzerland

Section editors and affiliations

  • Nicola Marzari
    • 1
  1. 1.Laboratory of theory and simulation of materialsSwiss Federal Institute of TechnologyLausanneSwitzerland

Personalised recommendations