Advertisement

Multiscale Concepts in Simulations of Organic Semiconductors

  • Denis Andrienko
Living reference work entry

Abstract

We critically review simulation approaches developed to study organic solar cells, light emitting diodes, and field effect transistors. Special attention is paid to multiscale techniques. In particular, we discuss how to parametrize coarse-grained models for morphology and charge transport simulations, to account for finite-size effects, and to treat long-range interactions in small systems.

Notes

Acknowledgements

This work was supported in part by the BMBF grants MEDOS (FKZ 03EK3503B), MESOMERIE (FKZ 13N10723), and InterPhase (FKZ 13N13661). The project has received funding from the NMP-20-2014 – “Widening materials models” program under Grant Agreement No. 646259 (MOSTOPHOS). DFG is acknowledged for financial support through the collaborative research center TRR 146.

References

  1. Abe M, Mori T, Osaka I, Sugimoto K, Takimiya K (2015) Thermally, operationally, and environmentally stable organic thin-film transistors based on Bis[1]benzothieno[2,3-d:2’,3’-d’]naphtho[2,3-b:6,7-b’]dithiophene derivatives: effective synthesis, electronic structures, and structure–property relationship. Chem Mater 27(14):5049–5057. https://doi.org/10.1021/acs.chemmater.5b01608
  2. Athanasopoulos S, Kirkpatrick J, Martínez D, Frost JM, Foden CM, Walker AB, Nelson J (2007) Predictive study of charge transport in disordered semiconducting polymers. Nano Lett 7(6):1785–1788. https://doi.org/10.1021/nl0708718
  3. Bässler H (1993) Charge transport in disordered organic photoconductors: a Monte Carlo simulation study. Physica Status Solidi (b) 175(1):15–56.  https://doi.org/10.1002/pssb.2221750102
  4. Baumeier B, Stenzel O, Poelking C, Andrienko D, Schmidt V (2012) Stochastic modeling of molecular charge transport networks. Phys Rev B 86(18):184202. https://doi.org/10.1103/PhysRevB.86.184202
  5. Borsenberger P, Pautmeier L, Bässler H (1991) Charge transport in disordered molecular solids. J Chem Phys 94(8):5447. https://doi.org/10.1063/1.460506, http://link.aip.org/link/JCPSA6/v94/i8/p5447/s1&Agg=doi, bibtex: Borsenberger1991
  6. Borsenberger P, Pautmeier L, Bässler H (1992) Nondispersive-to-dispersive charge-transport transition in disordered molecular solids. Phys Rev B 46(19):12145–12153. https://doi.org/10.1103/PhysRevB.46.12145, http://prb.aps.org/abstract/PRB/v46/i19/p12145_1
  7. Borsenberger PM, Magin EH, Van Auweraer MD, De Schryver FC (1993) The role of disorder on charge transport in molecularly doped polymers and related materials. Physica Status Solidi (a) 140(1):9–47. https://doi.org/10.1002/pssa.2211400102, http://onlinelibrary.wiley.com/doi/10.1002/pssa.2211400102/abstract, bibtex: Borsenberger1993
  8. Brereton T, Stenzel O, Baumeier B, Andrienko D, Schmidt V, Kroese D (2014) Efficient simulation of Markov Chains using segmentation. Methodol Comput Appl Probab 16(2):465–484. http://link.springer.com/article/10.1007/s11009-013-9327-x
  9. Cottaar J, Koster LJA, Coehoorn R, Bobbert PA (2011) Scaling theory for percolative charge transport in disordered molecular semiconductors. Phys Rev Lett 107(13):136601. https://doi.org/10.1103/PhysRevLett.107.136601
  10. D’Avino G, Muccioli L, Castet F, Poelking C, Andrienko D, Soos ZG, Jérôme Cornil, Beljonne D (2016) Electrostatic phenomena in organic semiconductors: fundamentals and implications for photovoltaics. J Phys Condens Matter 28(43):433002. https://doi.org/10.1088/0953-8984/28/43/433002, http://stacks.iop.org/0953-8984/28/i=43/a=433002
  11. Derrida B (1983) Velocity and diffusion constant of a periodic one-dimensional hopping model. J Stat Phys 31(3):433–450. https://doi.org/10.1007/BF01019492
  12. Ebata H, Izawa T, Miyazaki E, Takimiya K, Ikeda M, Kuwabara H, Yui T (2007) Highly soluble [1]Benzothieno[3,2-b]benzothiophene (BTBT) derivatives for high-performance, solution-processed organic field-effect transistors. J Am Chem Soc 129(51):15732–15733. https://doi.org/10.1021/ja074841i
  13. Ewald PP (1921) Die Berechnung optischer und elektrostatischer Gitterpotentiale. Annalen der Physik 369(3):253–287. https://doi.org/10.1002/andp.19213690304
  14. Fitzner R, Reinold E, Mishra A, Mena-Osteritz E, Ziehlke H, Körner C, Leo K, Riede M, Weil M, Tsaryova O, Weiß A, Uhrich C, Pfeiffer M, Bäuerle P (2011) Dicyanovinyl–Substituted Oligothiophenes: structure-property relationships and application in vacuum-processed small molecule organic solar cells. Adv Funct Mater 21(5):897–910. https://doi.org/10.1002/adfm.201001639, http://onlinelibrary.wiley.com/doi/10.1002/adfm.201001639/abstract
  15. Freire JA, Tonezer C (2009) Density of states and energetic correlation in disordered molecular systems due to induced dipoles. J Chem Phys 130(13):134901. https://doi.org/10.1063/1.3090482, http://link.aip.org/link/JCPSA6/v130/i13/p134901/s1&Agg=doi
  16. Kirkpatrick J, Marcon V, Nelson J, Kremer K, Andrienko D (2007) Charge mobility of discotic mesophases: a multiscale quantum and classical study. Phys Rev Lett 98(22):227402. https://doi.org/10.1103/PhysRevLett.98.227402
  17. Knapp E, Häusermann R, Schwarzenbach HU, Ruhstaller B (2010) Numerical simulation of charge transport in disordered organic semiconductor devices. J Appl Phys 108(5):054504. https://doi.org/10.1063/1.3475505, http://scitation.aip.org/content/aip/journal/jap/108/5/10.1063/1.3475505
  18. Kordt P, Andrienko D (2016) Modeling of spatially correlated energetic disorder in organic semiconductors. J Chem Theory Comput 12(1):36–40. http://doi.org/10.1021/acs.jctc.5b00764
  19. Kordt P, Stenzel O, Baumeier B, Schmidt V, Andrienko D (2014) Parametrization of extended Gaussian disorder models from microscopic charge transport simulations. J Chem Theory Comput 10(6):2508–2513. https://doi.org/10.1021/ct500269r
  20. Kordt P, van der Holst JJM, Al Helwi M, Kowalsky W, May F, Badinski A, Lennartz C, Andrienko D (2015a) Modeling of organic light emitting diodes: from molecular to device properties. Adv Funct Mater 25(13):1955–1971. https://doi.org/10.1002/adfm.201403004, http://onlinelibrary.wiley.com/doi/10.1002/adfm.201403004/abstract
  21. Kordt P, Stodtmann S, Badinski A, Helwi MA, Lennartz C, Andrienko D (2015b) Parameter-free continuous drift–diffusion models of amorphous organic semiconductors. Phys Chem Chem Phys 17(35):22778–22783. https://doi.org/10.1039/C5CP03605D, http://pubs.rsc.org/en/content/articlelanding/2015/cp/c5cp03605d
  22. Kordt P, Speck T, Andrienko D (2016) Finite-size scaling of charge carrier mobility in disordered organic semiconductors. Phys Rev B 94(1). https://doi.org/10.1103/PhysRevB.94.014208
  23. Lukyanov A, Andrienko D (2010) Extracting nondispersive charge carrier mobilities of organic semiconductors from simulations of small systems. Phys Rev B 82(19):193202. https://doi.org/10.1103/PhysRevB.82.193202
  24. Lyubartsev AP, Laaksonen A (1995) Calculation of effective interaction potentials from radial distribution functions: a reverse Monte Carlo approach. Phys Rev E 52(4):3730–3737. http://doi.org/10.1103/PhysRevE.52.3730
  25. May F, Al-Helwi M, Baumeier B, Kowalsky W, Fuchs E, Lennartz C, Andrienko D (2012a) Design rules for charge-transport efficient host materials for phosphorescent organic light-emitting diodes. J Am Chem Soc 134(33):13818–13822. https://doi.org/10.1021/ja305310r
  26. May F, Baumeier B, Lennartz C, Andrienko D (2012b) Can lattice models predict the density of states of amorphous organic semiconductors? Phys Rev Lett 109(13):136401. https://doi.org/10.1103/PhysRevLett.109.136401
  27. Murtola T, Bunker A, Vattulainen I, Deserno M, Karttunen M (2009) Multiscale modeling of emergent materials: biological and soft matter. Phys Chem Chem Phys 11(12):1869–1892. https://doi.org/10.1039/B818051B, http://pubs.rsc.org/en/content/articlelanding/2009/cp/b818051b
  28. Nelson J, Kwiatkowski JJ, Kirkpatrick J, Frost JM (2009) Modeling charge transport in organic photovoltaic materials. Acc Chem Res 42(11):1768–1778. https://doi.org/10.1021/ar900119f
  29. Novikov SV, Dunlap DH, Kenkre VM, Parris PE, Vannikov AV (1998) Essential role of correlations in governing charge transport in disordered organic materials. Phys Rev Lett 81(20):4472–4475. https://doi.org/10.1103/PhysRevLett.81.4472
  30. Pasveer WF, Cottaar J, Tanase C, Coehoorn R, Bobbert PA, Blom PWM, de Leeuw DM, Michels MAJ (2005) Unified description of charge-carrier mobilities in disordered semiconducting polymers. Phys Rev Lett 94(20):206601. https://doi.org/10.1103/PhysRevLett.94.206601
  31. Poelking C, Andrienko D (2013) Effect of polymorphism, regioregularity and paracrystallinity on charge transport in poly(3-hexylthiophene) [P3ht] nanofibers. Macromolecules 46(22):8941–8956. https://doi.org/10.1021/ma4015966
  32. Poelking C, Andrienko D (2015) Design rules for organic donor-acceptor heterojunctions: pathway for charge splitting and detrapping. J Am Chem Soc 6320–6326. https://doi.org/10.1021/jacs.5b02130
  33. Poelking C, Andrienko D (2016) Long-range embedding of molecular ions and excitations in a polarizable molecular environment. J Chem Theory Comput 12(9):4516–4523. https://doi.org/10.1021/acs.jctc.6b00599
  34. Poelking C, Cho E, Malafeev A, Ivanov V, Kremer K, Risko C, Brédas JL, Andrienko D (2013) Characterization of charge-carrier transport in semicrystalline polymers: electronic couplings, site energies, and charge-carrier dynamics in poly(bithiophene-alt-thienothiophene) [PBTTT]. J Phys Chem C 117(4):1633–1640. https://doi.org/10.1021/jp311160y
  35. Poelking C, Tietze M, Elschner C, Olthof S, Hertel D, Baumeier B, Würthner F, Meerholz K, Leo K, Andrienko D (2014) Impact of mesoscale order on open-circuit voltage in organic solar cells. Nat Mater 14(4):434–439. http://www.nature.com/doifinder/10.1038/nmat4167
  36. Reith D, Pütz M, Müller-Plathe F (2003) Deriving effective mesoscale potentials from atomistic simulations. J Comput Chem 24(13):1624–1636. https://doi.org/10.1002/jcc.10307, http://onlinelibrary.wiley.com/doi/10.1002/jcc.10307/abstract
  37. Ren P, Ponder JW (2003) Polarizable atomic multipole water model for molecular mechanics simulation. J Phys Chem B 107(24):5933–5947. https://doi.org/10.1021/jp027815+
  38. Rühle V, Junghans C, Lukyanov A, Kremer K, Andrienko D (2009) Versatile object-oriented toolkit for coarse-graining applications. J Chem Theory Comput 5(12):3211–3223. https://doi.org/10.1021/ct900369w
  39. Rühle V, Lukyanov A, May F, Schrader M, Vehoff T, Kirkpatrick J, Baumeier B, Andrienko D (2011) Microscopic simulations of charge transport in disordered organic semiconductors. J Chem Theory Comput 7(10):3335–3345. https://doi.org/10.1021/ct200388s
  40. Scher H, Montroll EW (1975) Anomalous transit-time dispersion in amorphous solids. Phys Rev B 12(6):2455–2477. https://doi.org/10.1103/PhysRevB.12.2455
  41. Schrader M, Fitzner R, Hein M, Elschner C, Baumeier B, Leo K, Riede M, Bäuerle P, Andrienko D (2012a) Comparative study of microscopic charge dynamics in crystalline acceptor-substituted oligothiophenes. J Am Chem Soc 134(13):6052–6056. https://doi.org/10.1021/ja300851q
  42. Schrader M, Körner C, Elschner C, Andrienko D (2012b) Charge transport in amorphous and smectic mesophases of dicyanovinyl-substituted oligothiophenes. J Mater Chem 22(41):22258–22264. https://doi.org/10.1039/C2JM34837C, http://pubs.rsc.org/en/content/articlelanding/2012/jm/c2jm34837c
  43. Schwarze M, Tress W, Beyer B, Gao F, Scholz R, Poelking C, Ortstein K, Günther AA, Kasemann D, Andrienko D, Leo K (2016) Band structure engineering in organic semiconductors. Science 352(6292):1446–1449. https://doi.org/10.1126/science.aaf0590, http://science.sciencemag.org/content/352/6292/1446
  44. Seki K, Tachiya M (2001) Electric field dependence of charge mobility in energetically disordered materials: polaron aspects. Phys Rev B 65:014305. https://doi.org/10.1103/PhysRevB.65.014305
  45. Smith ER (1981) Electrostatic energy in ionic crystals. Proc R Soc London A Math Phys Sci 375(1763):475–505. bibtex: smith_electrostatic_1981Google Scholar
  46. Soper AK (1996) Empirical potential Monte Carlo simulation of fluid structure. Chem Phys 202(2–3):295–306. https://doi.org/10.1016/0301-0104(95)00357-6, http://www.sciencedirect.com/science/article/pii/0301010495003576
  47. Stenzel O, Hirsch C, Brereton T, Baumeier B, Andrienko D, Kroese D, Schmidt V (2014) A general framework for consistent estimation of charge transport properties via random walks in random environments. Multiscale Model Simul 12(3):1108–1134. https://doi.org/10.1137/130942504
  48. Tschoep W, Kremer K, Batoulis J, Buerger T, Hahn O (1998) Simulation of polymer melts. I. Coarse-graining procedure for polycarbonates. Acta Polym 49(2–3):61–74. https://doi.org/10.1002/(SICI)1521-4044(199802)49:2/3<61::AID-APOL61>3.0.CO;2-V, http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1521-4044(199802)49:2/3<61::AID-APOL61>3.0.CO;2-V/abstract
  49. van der Holst JJM, van Oost FWA, Coehoorn R, Bobbert PA (2011) Monte Carlo study of charge transport in organic sandwich-type single-carrier devices: effects of Coulomb interactions. Phys Rev B 83(8):085206. https://doi.org/10.1103/PhysRevB.83.085206
  50. Yimer Y, Bobbert P, Coehoorn R (2009) Charge transport in disordered organic host–guest systems: effects of carrier density and electric field. Synth Met 159(21–22):2399–2401. https://doi.org/10.1016/j.synthmet.2009.10.025, http://www.sciencedirect.com/science/article/pii/S037967790900544X

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Max Planck Institute for Polymer ResearchMainzGermany

Section editors and affiliations

  • Kurt Kremer
    • 1
  1. 1.MPI for Polymer ResearchMainzGermany

Personalised recommendations