Advertisement

Polymer Solutions

  • Burkhard Dünweg
Living reference work entry

Abstract

The chapter provides a brief general introduction into the concepts of scaling, universality, and crossover scaling, plus the blob concept that provides an intuitive picture of crossover phenomena. We present the most important static and dynamic scaling laws for unentangled uncharged polymer solutions, together with their test and refinement by careful computer simulations. A hoard of simulation methods has been developed for these systems, and these will be briefly discussed as well.

References

  1. Ahlrichs P, Dünweg B (1999) Simulation of a single polymer chain in solution by combining lattice Boltzmann and molecular dynamics. J Chem Phys 111(17):8225–8239. http://aip.scitation.org/doi/abs/10.1063/1.480156CrossRefGoogle Scholar
  2. Ahlrichs P, Everaers R, Dünweg B (2001) Screening of hydrodynamic interactions in semidilute polymer solutions: a computer simulation study. Phys Rev E 64(4):040501. https://link.aps.org/doi/10.1103/PhysRevE.64.040501CrossRefGoogle Scholar
  3. Balboa-Usabiaga F, Bell J, Delgado-Buscalioni R, Donev A, Fai T, Griffith B, Peskin C (2012) Staggered schemes for fluctuating hydrodynamics. Multiscale Model Simul 10(4):1369–1408. http://epubs.siam.org/doi/abs/10.1137/120864520MathSciNetCrossRefGoogle Scholar
  4. Carmesin I, Kremer K (1988) The bond fluctuation method – a new effective algorithm for the dynamics of polymers in all spatial dimensions. Macromolecules 21(9):2819–2823. https://doi.org/10.1021/ma00187a030. wOS:A1988Q206000030CrossRefGoogle Scholar
  5. Clisby N (2010) Accurate estimate of the critical exponent ν for self-avoiding walks via a fast implementation of the pivot algorithm. Phys Rev Lett 104(5):055702. http://link.aps.org/doi/10.1103/PhysRevLett.104.055702CrossRefGoogle Scholar
  6. Clisby N, Dünweg B (2016) High-precision estimate of the hydrodynamic radius for self-avoiding walks. Phys Rev E 94(5):052102. http://link.aps.org/doi/10.1103/PhysRevE.94.052102CrossRefGoogle Scholar
  7. De Gennes PG (1976) Dynamics of Entangled polymer solutions. II. Inclusion of hydrodynamic interactions. Macromolecules 9(4):594–598. https://doi.org/10.1021/ma60052a012Google Scholar
  8. De Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca, New YorkGoogle Scholar
  9. Des Cloizeaux J, Jannink G (1991) Polymers in solution: their modelling and structure. Clarendon Press, OxfordGoogle Scholar
  10. Doi M, Edwards SF (1988) The theory of polymer dynamics. Oxford University Press, OxfordGoogle Scholar
  11. Donev A, Vanden-Eijnden E, Garcia A, Bell J (2010) On the accuracy of finite-volume schemes for fluctuating hydrodynamics. Commun Appl Math Comput Sci 5(2):149–197.  https://doi.org/10.2140/camcos.2010.5.149. http://msp.org/camcos/2010/5-2/p01.xhtmlMathSciNetCrossRefGoogle Scholar
  12. Dünweg B, Kremer K (1993) Molecular dynamics simulation of a polymer chain in solution. J Chem Phys 99(9):6983–6997. http://aip.scitation.org/doi/abs/10.1063/1.465445CrossRefGoogle Scholar
  13. Dünweg B, Ladd AJC (2009) Lattice Boltzmann simulations of soft matter systems. In: Holm C, Kremer K (eds) Advanced computer simulation approaches for soft matter sciences III. Advances in polymer science, vol 221. Springer, Berlin/Heidelberg, pp 89–166. http://link.springer.com/chapter/10.1007/978-3-540-87706-6_2.CrossRefGoogle Scholar
  14. Ermak DL, McCammon JA (1978) Brownian dynamics with hydrodynamic interactions. J Chem Phys 69(4):1352–1360. http://scitation.aip.org/content/aip/journal/jcp/69/4/10.1063/1.436761CrossRefGoogle Scholar
  15. Espanol P, Revenga M (2003) Smoothed dissipative particle dynamics. Phys Rev E 67(2):026705. https://link.aps.org/doi/10.1103/PhysRevE.67.026705CrossRefGoogle Scholar
  16. Espanol P, Warren P (1995) Statistical mechanics of dissipative particle dynamics. Europhys Lett 30(4):191. https://doi.org/10.1209/0295-5075/30/4/001. http://stacks.iop.org/0295-5075/30/i=4/a=001CrossRefGoogle Scholar
  17. Farago J, Meyer H, Baschnagel J, Semenov AN (2012a) Mode-coupling approach to polymer diffusion in an unentangled melt. II. The effect of viscoelastic hydrodynamic interactions. Phys Rev E 85(5):051807. https://link.aps.org/doi/10.1103/PhysRevE.85.051807
  18. Farago J, Semenov AN, Meyer H, Wittmer JP, Johner A, Baschnagel J (2012b) Mode-coupling approach to polymer diffusion in an unentangled melt. I. The effect of density fluctuations. Phys Rev E 85(5):051806. https://link.aps.org/doi/10.1103/PhysRevE.85.051806
  19. Fiore AM, Balboa Usabiaga F, Donev A, Swan JW (2017) Rapid sampling of stochastic displacements in Brownian dynamics simulations. J Chem Phys 146(12):124116. http://aip.scitation.org/doi/10.1063/1.4978242CrossRefGoogle Scholar
  20. Fixman M (1986) Implicit algorithm for Brownian dynamics of polymers. Macromolecules 19(4):1195–1204. http://dx.doi.org/10.1021/ma00158a042CrossRefGoogle Scholar
  21. Gompper G, Ihle T, Kroll DM, Winkler RG (2009) Multi-particle collision dynamics: a particle-based mesoscale simulation approach to the hydrodynamics of complex fluids. In: Holm C, Kremer K (eds) Advanced computer simulation approaches for soft matter sciences III. Advances in polymer science, vol 221. Springer, Berlin/Heidelberg, pp 1–87. http://link.springer.com/chapter/10.1007/12_2008_5Google Scholar
  22. Grassberger P (1997) Pruned-enriched Rosenbluth method: simulations of θ polymers of chain length up to 1,000,000. Phys Rev E 56(3):3682–3693. https://link.aps.org/doi/10.1103/PhysRevE.56.3682MathSciNetCrossRefGoogle Scholar
  23. Grosberg AY, Khokhlov AR (1994) Statistical physics of macromolecules. AIP Press, New YorkGoogle Scholar
  24. Huang CC, Winkler RG, Sutmann G, Gompper G (2010) Semidilute polymer solutions at equilibrium and under shear flow. Macromolecules 43(23):10107–10116. http://dx.doi.org/10.1021/ma101836xCrossRefGoogle Scholar
  25. Jain A, Dünweg B, Prakash JR (2012a) Dynamic crossover scaling in polymer solutions. Phys Rev Lett 109(8):088302. https://link.aps.org/doi/10.1103/PhysRevLett.109.088302CrossRefGoogle Scholar
  26. Jain A, Sunthar P, Dünweg B, Prakash JR (2012b) Optimization of a Brownian-dynamics algorithm for semidilute polymer solutions. Phys Rev E 85(6):066703. https://link.aps.org/doi/10.1103/PhysRevE.85.066703CrossRefGoogle Scholar
  27. Junghans C, Praprotnik M, Kremer K (2008) Transport properties controlled by a thermostat: an extended dissipative particle dynamics thermostat. Soft Matter 4(1):156–161. https://doi.org/10.1039/B713568H. http://pubs.rsc.org/en/Content/ArticleLanding/2008/SM/B713568HCrossRefGoogle Scholar
  28. Kumar KS, Prakash JR (2003) Equilibrium swelling and universal ratios in dilute polymer solutions: exact Brownian dynamics simulations for a delta function excluded volume potential. Macromolecules 36(20):7842–7856. http://dx.doi.org/10.1021/ma034296fCrossRefGoogle Scholar
  29. Lifshitz IM, Grosberg AY, Khokhlov AR (1978) Some problems of the statistical physics of polymer chains with volume interaction. Rev Modern Phys 50(3):683–713. http://link.aps.org/doi/10.1103/RevModPhys.50.683MathSciNetCrossRefGoogle Scholar
  30. Litvinov S, Ellero M, Hu X, Adams NA (2008) Smoothed dissipative particle dynamics model for polymer molecules in suspension. Phys Rev E 77(6):066703. https://link.aps.org/doi/10.1103/PhysRevE.77.066703CrossRefGoogle Scholar
  31. Liu B, Dünweg B (2003) Translational diffusion of polymer chains with excluded volume and hydrodynamic interactions by Brownian dynamics simulation. J Chem Phys 118(17):8061–8072. http://aip.scitation.org/doi/abs/10.1063/1.1564047CrossRefGoogle Scholar
  32. Lowe CP (1999) An alternative approach to dissipative particle dynamics. Europhys Lett 47(2):145. http://iopscience.iop.org/article/10.1209/epl/i1999-00365-x/metaCrossRefGoogle Scholar
  33. Madras N, Sokal AD (1988) The pivot algorithm: a highly efficient Monte Carlo method for the self-avoiding walk. J Stat Phys 50(1–2):109–186. https://link.springer.com/article/10.1007/BF01022990MathSciNetCrossRefGoogle Scholar
  34. Monaghan JJ (2005) Smoothed particle hydrodynamics. Rep Prog Phys 68(8):1703. https://doi.org/10.1088/0034-4885/68/8/R01. http://stacks.iop.org/0034-4885/68/i=8/a=R01MathSciNetCrossRefGoogle Scholar
  35. Mussawisade K, Ripoll M, Winkler RG, Gompper G (2005) Dynamics of polymers in a particle-based mesoscopic solvent. J Chem Phys 123(14):144905. http://aip.scitation.org/doi/10.1063/1.2041527CrossRefGoogle Scholar
  36. Öttinger HC (1995) Stochastic processes in polymeric fluids: tools and examples for developing simulation algorithms. Springer, Berlin/New YorkMATHGoogle Scholar
  37. Paul W, Binder K, Heermann DW, Kremer K (1991) Crossover scaling in semidilute polymer solutions: a Monte Carlo test. J Phys II 1(1):37–60. http://dx.doi.org/10.1051/jp2:1991138Google Scholar
  38. Pham TT, Schiller UD, Prakash JR, Dünweg B (2009) Implicit and explicit solvent models for the simulation of a single polymer chain in solution: lattice Boltzmann versus Brownian dynamics. J Chem Phys 131(16):164114. http://aip.scitation.org/doi/10.1063/1.3251771CrossRefGoogle Scholar
  39. Pierleoni C, Ryckaert J (1992) Molecular dynamics investigation of dynamic scaling for dilute polymer solutions in good solvent conditions. J Chem Phys 96(11):8539–8551. http://aip.scitation.org/doi/10.1063/1.462307CrossRefGoogle Scholar
  40. Rubinstein M, Colby RH (2003) Polymer physics. Oxford University Press, Oxford/New YorkGoogle Scholar
  41. Schäfer L (1999) Excluded volume effects in polymer solutions. Springer, Berlin/Heidelberg. http://link.springer.com/10.1007/978-3-642-60093-7CrossRefGoogle Scholar
  42. Smiatek J, Allen MP, Schmid F (2008) Tunable-slip boundaries for coarse-grained simulations of fluid flow. Eur Phys J E 26(1–2):115–122. https://link.springer.com.ejp.mpip-mainz.mpg.de/article/10.1140/epje/i2007-10311-4CrossRefGoogle Scholar
  43. Sunthar P, Prakash JR (2006) Dynamic scaling in dilute polymer solutions: the importance of dynamic correlations. Europhys Lett 75(1):77. http://iopscience.iop.org/article/10.1209/epl/i2006-10067-y/metaCrossRefGoogle Scholar
  44. Usabiaga FB, Pagonabarraga I, Delgado-Buscalioni R (2013) Inertial coupling for point particle fluctuating hydrodynamics. J Comput Phys 235:701–722. https://doi.org/10.1016/j.jcp.2012.10.045. http://www.sciencedirect.com/science/article/pii/S0021999112006493MathSciNetCrossRefGoogle Scholar
  45. Wittmer JP, Meyer H, Baschnagel J, Johner A, Obukhov S, Mattioni L, Müller M, Semenov AN (2004) Long range bond-bond correlations in dense polymer solutions. Phys Rev Lett 93(14):147801. https://link.aps.org/doi/10.1103/PhysRevLett.93.147801CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Theory of PolymersMax Planck Institute for Polymer ResearchMainzGermany
  2. 2.Department of Chemical EngineeringMonash UniversityClaytonAustralia

Section editors and affiliations

  • Kurt Kremer
    • 1
  1. 1.MPI for Polymer ResearchMainzGermany

Personalised recommendations