Advertisement

Electrospun Nanofibrous Scaffolds: A Versatile Therapeutic Tool for Cancer Management

  • Preethi Gu
  • S. Maya
  • B. S. Unnikrishnan
  • T. T. Sreelekha
Living reference work entry

Abstract

According to WHO cancer is the leading cause of mortality and morbidity worldwide with 8.2 million cancer-related deaths in 2012. Nanotechnology deals with creating a new and targeted platform for cancer therapy and diagnostics. Similar to nanoparticle-mediated drug delivery and diagnostic methods nanofibers are also being used for the same purpose. The advantages of using nanofibers are the high loading capacity, large surface area, porosity, biodegradability, cost effective, delivery of multi-model therapeutics etc. One of the most important methods for the synthesis of nanofibers is electrospinning which is based on the stretching of melt solution by electrostatic forces. Similar to the applications in reconstructive surgery and regenerative medicine, nanofibers can be used in cancer diagnostics and therapy. Researchers are trying to develop biosensors using nanofibers which can amplify the signals, improve sensitivity and accuracy of assays. Isolation and detection of circulating tumor cells (CTC) using cell capture based on nanofibers are also under development. Targeted and implantable devices for delivering bioactive components, tissue engineering and magnetic hyperthermia based intelligent nanofiber scaffolds are used in cancer treatment and management. 3D cultures of cancer cells on scaffolds have vital applications in tumor biology as well as anticancer drug screening and development whereas 3D culture and differentiation of Mesenchymal Stem Cells (MSC) on scaffolds have application in cancer surgery and wound healing.

Keywords

Cancer Electrospinning Nanofibers Tissue engineering Hyperthermia Drug delivery 

References

  1. 1.
    M.D.D.A Mandal, “What Causes Cancer?” News-Medical.net, 6 Feb 2017 (Online). Available: http://www.news-medical.net/health/What-causes-cancer.aspx
  2. 2.
    “WHO Cancer Control Programme,” World health organization. [Online]. Available: http://www.who.int/cancer/en/. Accessed 26 June 2017
  3. 3.
    Anand P, Kunnumakara AB, Sundaram C, Harikumar KB, Tharakan ST, Lai OS, Sung B, Aggarwal BB (2008) Cancer is a preventable disease that requires major lifestyle changes. Pharm Res 25:2097–2116.  https://doi.org/10.1007/s11095-008-9661-9 CrossRefGoogle Scholar
  4. 4.
    Langley RR, Fidler IJ (2011) The seed and soil hypothesis revisited-the role of tumor-stroma interactions in metastasis to different organs. Int J Cancer 128:2527–2535.  https://doi.org/10.1002/ijc.26031 CrossRefGoogle Scholar
  5. 5.
    Sporn MB (2000) Chemoprevention of cancer. Carcinogenesis 21:525–530.  https://doi.org/10.1093/carcin/21.3.525 CrossRefGoogle Scholar
  6. 6.
    Davis ID (2000) An overview of cancer immunotherapy. Immunol Cell Biol 78:179–195.  https://doi.org/10.1046/j.1440-1711.2000.00906.x\ CrossRefGoogle Scholar
  7. 7.
    Narayana A (2014) Applications of nanotechnology in cancer: a literature review of imaging and treatment. J Nucl Med Radiat Ther.  https://doi.org/10.4172/2155-9619.1000195
  8. 8.
    Balaji A, Vellayappan MV, John AA, Subramanian AP, Jaganathan SK, Supriyanto E, Razak SIA (2015) An insight on electrospun-nanofibers-inspired modern drug delivery system in the treatment of deadly cancers. RSC Adv 5:57984–58004.  https://doi.org/10.1039/c5ra07595e CrossRefGoogle Scholar
  9. 9.
    Drosou CG, Krokida MK, Biliaderis CG (2016) Encapsulation of bioactive compounds through electrospinning/electrospraying and spray drying: a comparative assessment of food-related applications. Dry Technol 35:139–162.  https://doi.org/10.1080/07373937.2016.1162797 CrossRefGoogle Scholar
  10. 10.
    Liang D, Hsiao BS, Chu B (2007) Functional electrospun nanofibrous scaffolds for biomedical applications. Adv Drug Deliv Rev 59:1392–1412.  https://doi.org/10.1016/j.addr.2007.04.021 CrossRefGoogle Scholar
  11. 11.
    Gu P (2015) Biomedical applications of natural polymer based nanofibrous scaffolds. Int J Med Nano Res.  https://doi.org/10.23937/2378-3664/1410010
  12. 12.
    Villarreal-Gómez LJCBA, Cornejo-Bravo JM, Vera-Graziano R, Grande D (2015) Electrospinning as a powerful technique for biomedical applications: a critically selected survey. J Biomater Sci Polym Ed 27:157–176.  https://doi.org/10.1080/09205063.2015.1116885 CrossRefGoogle Scholar
  13. 13.
    Ramakrishna S, Fujihara K, Teo W-E, Yong T, Ma Z, Ramaseshan R (2006) Electrospun nanofibers: solving global issues. Mater Today 9:40–50.  https://doi.org/10.1016/s1369-7021(06)71389-x CrossRefGoogle Scholar
  14. 14.
    Fan Z-Y, Zhao Y-L, Zhu X-Y, Luo Y, Shen M-W, Shi X-Y (2016) Folic acid modified electrospun poly(vinyl alcohol)/polyethyleneimine nanofibers for cancer cell capture applications. Chin J Polym Sci 34:755–765.  https://doi.org/10.1007/s10118-016-1792-6 CrossRefGoogle Scholar
  15. 15.
    Tseng H-C, Lee A-W, Wei P-L, Chang Y-J, Chen J-K (2016) Clinical diagnosis of colorectal cancer using electrospun triple-blend fibrous mat-based capture assay of circulating tumor cells. J Mater Chem B 4:6565–6580.  https://doi.org/10.1039/c6tb01359g CrossRefGoogle Scholar
  16. 16.
    Zhao Y, Fan Z, Shen M, Shi X (2015) Hyaluronic acid-functionalized electrospun polyvinyl alcohol/polyethyleneimine nanofibers for cancer cell capture applications. Adv Mater Interfaces 2:1500256.  https://doi.org/10.1002/admi.201500256 CrossRefGoogle Scholar
  17. 17.
    Hou S, Zhao L, Shen Q, Yu J, Ng C, Kong X, Wu D, Song M, Shi X, Xu X, Ouyang W-H, He R, Zhao X-Z, Lee T, Brunicardi FC, Garcia MA, Ribas A, Lo RS, Tseng H-R (2013) Polymer nanofiber-embedded microchips for detection, isolation, and molecular analysis of single circulating melanoma cells. Angew Chem 125:3463–3467.  https://doi.org/10.1002/ange.201208452 CrossRefGoogle Scholar
  18. 18.
    Shehata N, Samir E, Gaballah S, Hamed A, Elrasheedy A (2016) Embedded ceria nanoparticles in crosslinked PVA electrospun nanofibers as optical sensors for radicals. Sensors 16:1371.  https://doi.org/10.3390/s16091371 CrossRefGoogle Scholar
  19. 19.
    Kumar S, Rai P, Sharma JG, Sharma A, Malhotra BD (2016) PEDOT:PSS/PVA-nanofibers-decorated conducting paper for cancer diagnostics. Adv Mat Technol 1:1600056.  https://doi.org/10.1002/admt.201600056 CrossRefGoogle Scholar
  20. 20.
    Ali MA, Mondal K, Singh C, Malhotra BD, Sharma A (2015) Anti-epidermal growth factor receptor conjugated mesoporous zinc oxide nanofibers for breast cancer diagnostics. Nanoscale 7:7234–7245.  https://doi.org/10.1039/c5nr00194c CrossRefGoogle Scholar
  21. 21.
    Zhang Z, Liu S, Qi Y, Zhou D, Xie Z, Jing X, Chen X, Huang Y (2016) Time-programmed DCA and oxaliplatin release by multilayered nanofiber mats in prevention of local cancer recurrence following surgery. J Control Release 235:125–133.  https://doi.org/10.1016/j.jconrel.2016.05.046 CrossRefGoogle Scholar
  22. 22.
    Ma Y, Wang X, Zong S, Zhang Z, Xie Z, Huang Y, Yue Y, Liu S, Jing X (2015) Local, combination chemotherapy in prevention of cervical cancer recurrence after surgery by using nanofibers co-loaded with cisplatin and curcumin. RSC Adv 5:106325–106332.  https://doi.org/10.1039/c5ra17230f CrossRefGoogle Scholar
  23. 23.
    Yuan Z, Pan Y, Cheng R, Sheng L, Wu W, Pan G, Feng Q, Cui W (2016) Doxorubicin-loaded mesoporous silica nanoparticle composite nanofibers for long-term adjustments of tumor apoptosis. Nanotechnology 27:245101.  https://doi.org/10.1088/0957-4484/27/24/245101 CrossRefGoogle Scholar
  24. 24.
    Wang B, Li H, Yao Q, Zhang Y, Zhu X, Xia T, Wang J, Li G, Li X, Ni S (2016) Local in vitro delivery of rapamycin from electrospun PEO/PDLLA nanofibers for glioblastoma treatment. Biomed Pharmacother 83:1345–1352.  https://doi.org/10.1016/j.biopha.2016.08.033 CrossRefGoogle Scholar
  25. 25.
    Tseng Y-Y, Su C-H, Yang S-T, Huang Y-C, Lee W-H, Wang Y-C, Liu S-C, Liu S-J (2016) Advanced interstitial chemotherapy combined with targeted treatment of malignant glioma in rats by using drug-loaded nanofibrous membranes. Oncotarget.  https://doi.org/10.18632/oncotarget.10989
  26. 26.
    Sedghi R, Shaabani A, Mohammadi Z, Samadi FY, Isaei E (2017) Biocompatible electrospinning chitosan nanofibers: a novel delivery system with superior local cancer therapy. Carbohydr Polym 159:1–10.  https://doi.org/10.1016/j.carbpol.2016.12.011 CrossRefGoogle Scholar
  27. 27.
    Aggarwal U, Goyal AK, Rath G (2017) Development and characterization of the cisplatin loaded nanofibers for the treatment of cervical cancer. Mater Sci Eng C 75:125–132.  https://doi.org/10.1016/j.msec.2017.02.013 CrossRefGoogle Scholar
  28. 28.
    Irani M, Sadeghi GMM, Haririan I (2017) The sustained delivery of temozolomide from electrospun PCL-Diol-b-PU/gold nanocomposite nanofibers to treat glioblastoma tumors. Mater Sci Eng C 75:165–174.  https://doi.org/10.1016/j.msec.2017.02.029 CrossRefGoogle Scholar
  29. 29.
    Zhou H, Liu X, Wu F, Zhang J, Wu Z, Yin H, Shi H (2016) Preparation, characterization, and antitumor evaluation of electrospun resveratrol loaded nanofibers. J Nanomater 2016:1–11.  https://doi.org/10.1155/2016/5918462 CrossRefGoogle Scholar
  30. 30.
    Ardeshirzadeh B, Anaraki NA, Irani M, Rad LR, Shamshiri S (2015) Controlled release of doxorubicin from electrospun PEO/chitosan/graphene oxide nanocomposite nanofibrous scaffolds. Mater Sci Eng C 48:384–390.  https://doi.org/10.1016/j.msec.2014.12.039 CrossRefGoogle Scholar
  31. 31.
    Jassal M, Sengupta S, Bhowmick S (2015) Functionalization of electrospun poly(caprolactone) fibers for pH-controlled delivery of doxorubicin hydrochloride. J Biomater Sci Polym Ed 26:1425–1438.  https://doi.org/10.1080/09205063.2015.1100495 CrossRefGoogle Scholar
  32. 32.
    Zhu X, Ni S, Xia T, Yao Q, Li H, Wang B, Wang J, Li X, Su W (2015) Anti-neoplastic cytotoxicity of SN-38-loaded PCL/gelatin electrospun composite nanofiber scaffolds against human glioblastoma cells in vitro. J Pharm Sci 104:4345–4354.  https://doi.org/10.1002/jps.24684 CrossRefGoogle Scholar
  33. 33.
    Liu S, Wang X, Zhang Z, Zhang Y, Zhou G, Huang Y, Xie Z, Jing X (2015) Use of asymmetric multilayer polylactide nanofiber mats in controlled release of drugs and prevention of liver cancer recurrence after surgery in mice. Nanomedicine 11:1047–1056.  https://doi.org/10.1016/j.nano.2015.03.001 CrossRefGoogle Scholar
  34. 34.
    Okada T, Niiyama E, Uto K, Aoyagi T, Ebara M (2015) Inactivated Sendai virus (HVJ-E) immobilized electrospun nanofiber for cancer therapy. Materials 9:12.  https://doi.org/10.3390/ma9010012 CrossRefGoogle Scholar
  35. 35.
    Sudakaran SV, Venugopal JR, Vijayakumar GP, Abisegapriyan S, Grace AN, Ramakrishna S (2017) Sequel of MgO nanoparticles in PLACL nanofibers for anti-cancer therapy in synergy with curcumin/β-cyclodextrin. Mater Sci Eng C 71:620–628.  https://doi.org/10.1016/j.msec.2016.10.050 CrossRefGoogle Scholar
  36. 36.
    Kaplan JA, Liu R, Freedman JD, Padera R, Schwartz J, Colson YL, Grinstaff MW (2016) Prevention of lung cancer recurrence using cisplatin-loaded superhydrophobic nanofiber meshes. Biomaterials 76:273–281.  https://doi.org/10.1016/j.biomaterials.2015.10.060 CrossRefGoogle Scholar
  37. 37.
    “Hyperthermia in Cancer Treatment,” National Cancer Institute. [Online]. Available: https://www.cancer.gov/about-cancer/treatment/types/surgery/hyperthermia-fact-sheet. Accessed: 26 June 2017
  38. 38.
    Martirosyan KS (2012) Thermosensitive magnetic nanoparticles for self-controlled hyperthermia cancer treatment. J Nanomedicine Nanotechnol.  https://doi.org/10.4172/2157-7439.1000e112
  39. 39.
    Chen Y-H, Cheng C-H, Chang W-J, Lin Y-C, Lin F-H, Lin J-C (2016) Studies of magnetic alginate-based electrospun matrices cross linked with different methods for potential hyperthermia treatment. Mater Sci Eng C 62:338–349.  https://doi.org/10.1016/j.msec.2016.01.070 CrossRefGoogle Scholar
  40. 40.
    Huang C, Soenen SJ, Rejman J, Trekker J, Chengxun L, Lagae L, Ceelen W, Wilhelm C, Demeester J, Smedt SCD (2012) Magnetic electrospun fibers for cancer therapy. Adv Funct Mater 22:2479–2486.  https://doi.org/10.1002/adfm.201102171 CrossRefGoogle Scholar
  41. 41.
    Lin T-C, Lin F-H, Lin J-C (2012) In vitro feasibility study of the use of a magnetic electrospun chitosan nanofiber composite for hyperthermia treatment of tumor cells. Acta Biomater 8:2704–2711.  https://doi.org/10.1016/j.actbio.2012.03.045 CrossRefGoogle Scholar
  42. 42.
    Kim Y-J, Ebara M, Aoyagi T (2013) A smart hyperthermia nanofiber with switchable drug release for inducing cancer apoptosis. Adv Funct Mater 23:5753–5761.  https://doi.org/10.1002/adfm.201300746 CrossRefGoogle Scholar
  43. 43.
    Severyukhina A, Petrova N, Smuda K, Terentyuk G, Klebtsov B, Georgieva R, Bäumler H, Gorin D (2016) Photosensitizer-loaded electrospun chitosan-based scaffolds for photodynamic therapy and tissue engineering. Colloids Surf B: Biointerfaces 144:57–64.  https://doi.org/10.1016/j.colsurfb.2016.03.081 CrossRefGoogle Scholar
  44. 44.
    Bagó JR, Pegna GJ, Okolie O, Mohiti-Asli M, Loboa EG, Hingtgen SD (2016) Electrospun nanofibrous scaffolds increase the efficacy of stem cell-mediated therapy of surgically resected glioblastoma. Biomaterials 90:116–125.  https://doi.org/10.1016/j.biomaterials.2016.03.008 CrossRefGoogle Scholar
  45. 45.
    Koneru B, Shi Y, Munaweera I, Wight-Carter M, Kadara H, Yuan H, Pasqua AJD, Balkus KJ (2016) Radiotherapeutic bandage for the treatment of squamous cell carcinoma of the skin. Nucl Med Biol 43:333–338.  https://doi.org/10.1016/j.nucmedbio.2016.02.010 CrossRefGoogle Scholar
  46. 46.
    Janani G, Pillai MM, Selvakumar R, Bhattacharyya A, Sabarinath C (2017) An in vitro 3D model using collagen coated gelatin nanofibers for studying breast cancer metastasis. Biofabrication 9:015016.  https://doi.org/10.1088/1758-5090/aa5510 CrossRefGoogle Scholar
  47. 47.
    Guiro K, Patel SA, Greco SJ, Rameshwar P, Arinzeh TL (2015) Investigating breast cancer cell behavior using tissue engineering scaffolds. PLoS One.  https://doi.org/10.1371/journal.pone.0118724
  48. 48.
    Nelson MT, Short A, Cole SL, Gross AC, Winter J, Eubank TD, Lannutti JJ (2014) Preferential, enhanced breast cancer cell migration on biomimetic electrospun nanofiber ‘cell highways’. BMC Cancer.  https://doi.org/10.1186/1471-2407-14-825
  49. 49.
    Kievit FM, Cooper A, Jana S, Leung MC, Wang K, Edmondson D, Wood D, Lee JSH, Ellenbogen RG, Zhang M (2013) Aligned chitosan-polycaprolactone polyblend nanofibers promote the migration of glioblastoma cells. Adv Healthc Mater 2:1651–1659.  https://doi.org/10.1002/adhm.201300092 CrossRefGoogle Scholar
  50. 50.
    Grodecki J, Short AR, Winter JO, Rao SS, Winter JO, Otero JJ, Lannutti JJ, Sarkar A (2015) Glioma-astrocyte interactions on white matter tract-mimetic aligned electrospun nanofibers. Biotechnol Prog 31:1406–1415.  https://doi.org/10.1002/btpr.2123 CrossRefGoogle Scholar
  51. 51.
    Li Y, Sun L, Fu H, Duan X (2016) Facile fabrication of a 3D electrospun fibrous mat by ice-templating for a tumor spheroid culture. Polym Chem 7:6805–6811.  https://doi.org/10.1039/c6py01718e CrossRefGoogle Scholar
  52. 52.
    Kwak J-Y, Kim T-E, Kim CG, Kim JS, Jin S, Yoon S, Bae H-R, Kim J-H, Jeong YH (2016) Three-dimensional culture and interaction of cancer cells and dendritic cells in an electrospun nano-submicron hybrid fibrous scaffold. Int J Nanomedicine 11:823.  https://doi.org/10.2147/ijn.s101846 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Preethi Gu
    • 1
  • S. Maya
    • 1
  • B. S. Unnikrishnan
    • 1
  • T. T. Sreelekha
    • 1
  1. 1.Laboratory of Biopharmaceuticals and Nanomedicine, Division of Cancer ResearchRegional Cancer CentreThiruvananthapuramIndia

Personalised recommendations