Characterization and Evaluation of Nanofiber Materials

  • Taha Roodbar Shojaei
  • Abdollah Hajalilou
  • Meisam Tabatabaei
  • Hossein Mobli
  • Mortaza Aghbashlo
Living reference work entry


Characterization of nanofiber is performed to correlate test metrics with the practical characteristics of the material and to ensure reliable high quality of the products during production. The aim of single-fiber measurement procedure is to find fundamental information to better understand the relationship between the structure and the features of nanofibers. Theoretically, several characterization techniques have been utilized with nanofibers. Nevertheless, it must be borne in mind that morphology, molecular structure and mechanical properties are the most critical features of nanofibers. Therefore, in this chapter, it is attempted to explain briefly the nanofiber characterization techniques by focusing on the morphological and mechanical properties of nanofibers to provide fundamental data for evaluation of nanofiber materials.


Nanofibers Characterization Polymers Synthesis Nanostructures 


  1. 1.
    Al-Saleh MH, Sundararaj U (2009) A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon 47:2–22. CrossRefGoogle Scholar
  2. 2.
    Arinstein A, Burman M, Gendelman O, Zussman E (2007) Effect of supramolecular structure on polymer nanofibre elasticity. Nat Nanotechnol 2:59–62. CrossRefGoogle Scholar
  3. 3.
    Balzer F, Bordo VG, Simonsen AC, Rubahn H-G (2003) Isolated hexaphenyl nanofibers as optical waveguides. Appl Phys Lett 82:10–12. CrossRefGoogle Scholar
  4. 4.
    Bellan LM, Coates GW, Craighead HG (2006) Poly(dicyclopentadiene) submicron fibers produced by electrospinning. Macromol Rapid Commun 27:511–515. CrossRefGoogle Scholar
  5. 5.
    Bellan LM, Kameoka J, Craighead HG (2005) Measurement of the Young’s moduli of individual polyethylene oxide and glass nanofibres. Nanotechnology 16:1095–1099. CrossRefGoogle Scholar
  6. 6.
    Bhowmick S, Fowler A, Warner SB, Meressi T, Gibson P (2007) Transport in 3-D nanofab geometries. National Textile Center Annual Reports, NTC Project F06-MD04Google Scholar
  7. 7.
    Birdi KSS (2003) Scanning probe microscopes: applications in science and technology. CRC Press, Boca RatonCrossRefGoogle Scholar
  8. 8.
    Bognitzki M, Czado W, Frese T, Schaper A, Hellwig M, Steinhart M, Greiner A, Wendorff JH (2001) Nanostructured fibers via electrospinning. Adv Mater 13:70–72.<70::AID-ADMA70>3.0.CO;2-H CrossRefGoogle Scholar
  9. 9.
    Boland ED, Wnek GE, Simpson DG, Pawlowski KJ, Bowlin GL (2001) Tailoring tissue engineering scaffolds using electrostatic processing techniques: a study of poly(glycolic acid) electrospinning. J Macromol Sci A: Pure Appl Chem 38:1231–1243CrossRefGoogle Scholar
  10. 10.
    Buell S, Van Vliet KJ, Rutledge GC (2009) Mechanical properties of glassy polyethylene nanofibers via molecular dynamics simulations. Macromolecules 42:4887–4895. CrossRefGoogle Scholar
  11. 11.
    Buer A, Ugbolue SC, Warner SB (2001) Electrospinning and properties of some nanofibers. Text Res J 71:323–328. CrossRefGoogle Scholar
  12. 12.
    Chahal S, Hussain FSJ, Yusoff MBM (2013) Characterization of modified cellulose (MC)/poly (vinyl alcohol) electrospun nanofibers for bone tissue engineering. Proc Eng 53:683–688. CrossRefGoogle Scholar
  13. 13.
    Chekanov Y, Ohnogi R, Asai S, Sumita M (1999) Electrical properties of epoxy resin filled with carbon fibers. J Mater Sci 34:5589–5592CrossRefGoogle Scholar
  14. 14.
    Chen K, Shen Z, Luo J, Wang X, Sun R (2015) Quaternized chitosan/silver nanoparticles composite as a SERS substrate for detecting tricyclazole and Sudan I. Appl Surf Sci 351:466–473. CrossRefGoogle Scholar
  15. 15.
    Chipara DM, Macossay J, Ybarra AVR, Chipara AC, Eubanks TM, Chipara M (2013) Raman spectroscopy of polystyrene nanofibers – multiwalled carbon nanotubes composites. Appl Surf Sci 275:23–27. CrossRefGoogle Scholar
  16. 16.
    Cuenot S, Frétigny C, Demoustier-Champagne S, Nysten B (2004) Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys Rev B 69:165410. CrossRefGoogle Scholar
  17. 17.
    Demczyk B, Wang Y, Cumings J, Hetman M, Han W, Zettl A, Ritchie R (2002) Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater Sci Eng A 334:173–178. CrossRefGoogle Scholar
  18. 18.
    Demir M, Yilgor I, Yilgor E, Erman B (2002) Electrospinning of polyurethane fibers. Polymer 43:3303–3309. CrossRefGoogle Scholar
  19. 19.
    Dersch R, Liu T, Schaper AK, Greiner A, Wendorff JH (2003) Electrospun nanofibers: internal structure and intrinsic orientation. J Polym Sci A Polym Chem 41:545–553. CrossRefGoogle Scholar
  20. 20.
    Ding B, Fujimoto K, Shiratori S (2005) Preparation and characterization of self-assembled polyelectrolyte multilayered films on electrospun nanofibers. Thin Solid Films 491:23–28. CrossRefGoogle Scholar
  21. 21.
    Ding B, Kim J, Miyazaki Y, Shiratori S (2004) Electrospun nanofibrous membranes coated quartz crystal microbalance as gas sensor for NH3 detection. Sensors Actuators B Chem 101:373–380. CrossRefGoogle Scholar
  22. 22.
    Ding B, Kimura E, Sato T, Fujita S, Shiratori S (2004) Fabrication of blend biodegradable nanofibrous nonwoven mats via multi-jet electrospinning. Polymer 45:1895–1902. CrossRefGoogle Scholar
  23. 23.
    Duan B, Yuan X, Zhu Y, Zhang Y, Li X, Zhang Y, Yao K (2006) A nanofibrous composite membrane of PLGA–chitosan/PVA prepared by electrospinning. Eur Polym J 42:2013–2022. CrossRefGoogle Scholar
  24. 24.
    Esnaashari SS, Rezaei S, Mirzaei E, Afshari H, Rezayat SM, Faridi-Majidi R (2014) Preparation and characterization of kefiran electrospun nanofibers. Int J Biol Macromol 70:50–56. CrossRefGoogle Scholar
  25. 25.
    Gao Y, Yang Z, Kuang Y, Ma M-L, Li J, Zhao F, Xu B (2010) Enzyme-instructed self-assembly of peptide derivatives to form nanofibers and hydrogels. Biopolymers 94:19–31. CrossRefGoogle Scholar
  26. 26.
    Gebeyehu MB, Chang Y-H, Abay AK, Chang S-Y, Lee J-Y, Wu C-M, Chiang T-C, Murakami R-I (2016) Fabrication and characterization of continuous silver nanofiber/polyvinylpyrrolidone (AgNF/PVP) core–shell nanofibers using the coaxial electrospinning process. RSC Adv 6:54162–54168. CrossRefGoogle Scholar
  27. 27.
    Goldman A (1999) Handbook of modern ferromagnetic materials. Springer Science & Business Media. The Springer International Series in Engineering and Computer Science, Series Volume 505, Springer US, Boston, MA,
  28. 28.
    Greiner A, Wendorff JH, Yarin AL, Zussman E (2006) Biohybrid nanosystems with polymer nanofibers and nanotubes. Appl Microbiol Biotechnol 71:387–393. CrossRefGoogle Scholar
  29. 29.
    Griffith AA (1921) The phenomena of rupture and flow in solids. Philos Trans R Soc Lond 221:163–198CrossRefGoogle Scholar
  30. 30.
    Gu S-Y, Ren J (2005) Process optimization and empirical modeling for electrospun poly(D,L-lactide) fibers using response surface methodology. Macromol Mater Eng 290:1097–1105. CrossRefGoogle Scholar
  31. 31.
    Gu S-Y, Wu Q-L, Ren J, Vancso GJ (2005) Mechanical properties of a single electrospun fiber and its structures. Macromol Rapid Commun 26:716–720. CrossRefGoogle Scholar
  32. 32.
    Guerrini LM, Branciforti MC, Canova T, Suman Bretas RE (2009) Electrospinning and characterization of polyamide 66 nanofibers with different molecular weights. Mater Res 12:181–190CrossRefGoogle Scholar
  33. 33.
    Hajalilou A, Hashim M, Ebrahimi-Kahrizsangi R, Mohamed Kamari H, Sarami N (2014) Synthesis and structural characterization of nano-sized nickel ferrite obtained by mechanochemical process. Ceram Int 40:5881–5887. CrossRefGoogle Scholar
  34. 34.
    Hajalilou A, Hashim M, Ebrahimi-Kahrizsangi R, Sarami N (2015) Influence of CaO and SiO2 co-doping on the magnetic, electrical properties and microstructure of a Ni–Zn ferrite. J Phys D Appl Phys 48:145001CrossRefGoogle Scholar
  35. 35.
    Hajalilou A, Kamari HM, Shameli K (2017) Dielectric and electrical characteristics of mechanically synthesized Ni–Zn ferrite nanoparticles. J Alloys Compd 708:813–826. CrossRefGoogle Scholar
  36. 36.
    Hou H, Ge JJ, Zeng J, Li Q, Reneker DH, Greiner A, Cheng SZD (2005) Electrospun polyacrylonitrile nanofibers containing a high concentration of well-aligned multiwall carbon nanotubes. Chem Mater 17:967–973. CrossRefGoogle Scholar
  37. 37.
    Huang Z-M, Zhang Y-Z, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253. CrossRefGoogle Scholar
  38. 38.
    Hugel T (2002) Single-molecule optomechanical cycle. Science 296:1103–1106. CrossRefGoogle Scholar
  39. 39.
    Inai R, Kotaki M, Ramakrishna S (2005) Deformation behavior of electrospun poly(L-lactide-co-ɛ-caprolactone) nonwoven membranes under uniaxial tensile loading. J Polym Sci B Polym Phys 43:3205–3212. CrossRefGoogle Scholar
  40. 40.
    Inai R, Kotaki M, Ramakrishna S (2005) Structure and properties of electrospun PLLA single nanofibres. Nanotechnology 16:208–213. CrossRefGoogle Scholar
  41. 41.
    Jalili R, Morshed M, Ravandi SAH (2006) Fundamental parameters affecting electrospinning of PAN nanofibers as uniaxially aligned fibers. J Appl Polym Sci 101:4350–4357. CrossRefGoogle Scholar
  42. 42.
    Jena AK, Gupta KM (1999) In-plane compression porometry of battery separators. J Power Sources 80:46–52. CrossRefGoogle Scholar
  43. 43.
    Ji Y, Li B, Ge S, Sokolov JC, Rafailovich MH (2006) Structure and nanomechanical characterization of electrospun PS/clay nanocomposite fibers. Langmuir 22:1321–1328. CrossRefGoogle Scholar
  44. 44.
    Jia Y, Huang G, Dong F, Liu Q, Nie W (2016) Preparation and characterization of electrospun poly(ε-caprolactone)/poly(vinyl pyrrolidone) nanofiber composites containing silver particles. Polym Compos 37:2847–2854. CrossRefGoogle Scholar
  45. 45.
    Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491. CrossRefGoogle Scholar
  46. 46.
    Kim C, Park S-H, Cho J-I, Lee D-Y, Park T-J, Lee W-J, Yang K-S (2004) Raman spectroscopic evaluation of polyacrylonitrile-based carbon nanofibers prepared by electrospinning. J Raman Spectrosc 35:928–933. CrossRefGoogle Scholar
  47. 47.
    Kim HS, Jin H-J, Myung SJ, Kang M, Chin I-J (2006) Carbon nanotube-adsorbed electrospun nanofibrous membranes of nylon 6. Macromol Rapid Commun 27:146–151. CrossRefGoogle Scholar
  48. 48.
    Kim J-S, Lee DS (2000) Thermal properties of electrospun polyesters. Polym J 32:616–618. CrossRefGoogle Scholar
  49. 49.
    Kim J-S, Reneker DH (1999) Polybenzimidazole nanofiber produced by electrospinning. Polym Eng Sci 39:849–854. CrossRefGoogle Scholar
  50. 50.
    Kitazawa M, Ohta R, Tanaka J, Tanemura M (2007) Electrical properties of single carbon nanofibers grown on tips of scanning probe microscope cantilevers by ion irradiation. Jpn J Appl Phys 46:5607–5610. CrossRefGoogle Scholar
  51. 51.
    Ko F, Gogotsi Y, Ali A, Naguib N, Ye H, Yang GL, Li C, Willis P (2003) Electrospinning of continuous carbon nanotube-filled nanofiber yarns. Adv Mater 15:1161–1165. CrossRefGoogle Scholar
  52. 52.
    Lee IW, Li J, Chen X, Park HJ (2016) Electrospun poly(vinyl alcohol) composite nanofibers with halloysite nanotubes for the sustained release of sodium D-pantothenate. J Appl Polym Sci 133. doi:
  53. 53.
    Lee S-H, Tekmen C, Sigmund WM (2005) Three-point bending of electrospun TiO2 nanofibers. Mater Sci Eng A 398:77–81. CrossRefGoogle Scholar
  54. 54.
    Li M, Mondrinos MJ, Gandhi MR, Ko FK, Weiss AS, Lelkes PI (2005) Electrospun protein fibers as matrices for tissue engineering. Biomaterials 26:5999–6008. CrossRefGoogle Scholar
  55. 55.
    Li Q, Liu C, Wang X, Fan S (2009) Measuring the thermal conductivity of individual carbon nanotubes by the Raman shift method. Nanotechnology 20:145702. CrossRefGoogle Scholar
  56. 56.
    Li W-J, Laurencin CT, Caterson EJ, Tuan RS, Ko FK (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res 60:613–621. CrossRefGoogle Scholar
  57. 57.
    Lin S, Cai Q, Ji J, Sui G, Yu Y, Yang X, Ma Q, Wei Y, Deng X (2008) Electrospun nanofiber reinforced and toughened composites through in situ nano-interface formation. Compos Sci Technol 68:3322–3329. CrossRefGoogle Scholar
  58. 58.
    Liu W, Wu Z, Reneker DH (2000) Structure and morphology of poly(metaphenylene isophthalamide) nanofibers produced by electrospinning. Polym Prepr 41:1193–1194Google Scholar
  59. 59.
    Liu Y, Cui L, Guan F, Gao Y, Hedin NE, Zhu L, Fong H (2007) Crystalline morphology and polymorphic phase transitions in electrospun nylon-6 nanofibers. Macromolecules 40:6283–6290. CrossRefGoogle Scholar
  60. 60.
    Lu R, Chang K, Fu B, Shen Y, Xu M, Yang S, Song X, Liu M (2014) Magnetic properties of different CoFe2O4 nanostructures: nanofibers versus nanoparticles. J Mater Chem C 2:8578–8584CrossRefGoogle Scholar
  61. 61.
    Luu YK, Kim K, Hsiao BS, Chu B, Hadjiargyrou M (2003) Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA–PEG block copolymers. J Control Release 89:341–353. CrossRefGoogle Scholar
  62. 62.
    Ma Z, Kotaki M, Inai R, Ramakrishna S (2005) Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Eng 11:101–109. CrossRefGoogle Scholar
  63. 63.
    Marcos M, Cano P, Fantazzini P, Garavaglia C, Gomez S, Garrido L (2006) NMR relaxometry and imaging of water absorbed in biodegradable polymer scaffolds. Magn Reson Imaging 24:89–95. CrossRefGoogle Scholar
  64. 64.
    Mathew G, Hong JP, Rhee JM, Lee HS, Nah C (2005) Preparation and characterization of properties of electrospun poly(butylene terephthalate) nanofibers filled with carbon nanotubes. Polym Test 24:712–717. CrossRefGoogle Scholar
  65. 65.
    McKee MG, Park T, Unal S, Yilgor I, Long TE (2005) Electrospinning of linear and highly branched segmented poly(urethane urea)s. Polymer 46:2011–2015. CrossRefGoogle Scholar
  66. 66.
    McManus MC, Boland ED, Koo HP, Barnes CP, Pawlowski KJ, Wnek GE, Simpson DG, Bowlin GL (2006) Mechanical properties of electrospun fibrinogen structures. Acta Biomater 2:19–28. CrossRefGoogle Scholar
  67. 67.
    Miller RE, Shenoy VB (2000) Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11:139–147. CrossRefGoogle Scholar
  68. 68.
    Morozov V, Morozova T, Kallenbach N (1998) Atomic force microscopy of structures produced by electrospraying polymer solutions. Int J Mass Spectrom 178:143–159. CrossRefGoogle Scholar
  69. 69.
    Oliveira JE, Mattoso LHC, Orts WJ, Medeiros ES (2013) Structural and morphological characterization of micro and nanofibers produced by electrospinning and solution blow spinning: a comparative study. Adv Mater Sci Eng 1–14. doi:
  70. 70.
    Paiva-Santos CO, Gouveia H, Las WC, Varela JA (1999) Gauss-Lorentz size-strain broadening and cell parameters analysis of Mn doped SnO2 prepared by organic route. Mater Struct 6:111–115Google Scholar
  71. 71.
    Patel AC, Li S, Yuan J-M, Wei Y (2006) In situ encapsulation of horseradish peroxidase in electrospun porous silica fibers for potential biosensor applications. Nano Lett 6:1042–1046. CrossRefGoogle Scholar
  72. 72.
    Pedicini A, Farris RJ (2003) Mechanical behavior of electrospun polyurethane. Polymer 44:6857–6862. CrossRefGoogle Scholar
  73. 73.
    Pirlot C, Mekhalif Z, Fonseca A, Nagy JB, Demortier G, Delhalle J (2003) Surface modifications of carbon nanotube/polyacrylonitrile composite films by proton beams. Chem Phys Lett 372:595–602. CrossRefGoogle Scholar
  74. 74.
    Ren S, Dong L, Zhang X, Lei T, Ehrenhauser F, Song K, Li M, Sun X, Wu Q (2017) Electrospun nanofibers made of silver nanoparticles, cellulose nanocrystals, and polyacrylonitrile as substrates for surface-enhanced Raman scattering. Materials 10:68. CrossRefGoogle Scholar
  75. 75.
    Richard-Lacroix M, Pellerin C (2012) Orientation and structure of single electrospun nanofibers of poly(ethylene terephthalate) by confocal Raman spectroscopy. Macromolecules 45:1946–1953. CrossRefGoogle Scholar
  76. 76.
    Roodbar Shojaei T, Mohd Salleh MA, Sijam K, Abdul Rahim R, Mohsenifar A, Safarnejad R, Tabatabaei M (2016) Fluorometric immunoassay for detecting the plant virus citrus tristeza using carbon nanoparticles acting as quenchers and antibodies labeled with CdTe quantum dots. Microchim Acta 183:2277–2287. CrossRefGoogle Scholar
  77. 77.
    Roodbar Shojaei T, Mohd Salleh MA, Sijam K, Abdul Rahim R, Mohsenifar A, Safarnejad R, Tabatabaei M (2016) Detection of citrus tristeza virus by using fluorescence resonance energy transfer-based biosensor. Spectrochim Acta A Mol Biomol Spectrosc 169:216–222. CrossRefGoogle Scholar
  78. 78.
    Roodbar Shojaei T, Mohd Salleh MA, Tabatabaei M, Ekrami A, Motallebi R, Rahmani-Cherati T, Hajalilou A, Jorfi R (2014) Development of sandwich-form biosensor to detect mycobacterium tuberculosis complex in clinical sputum specimens. Braz J Infect Dis 18:600–608. CrossRefGoogle Scholar
  79. 79.
    Sasipriya K, Suriyaprabha R, Prabu P, Rajendran V (2013) Synthesis and characterisation of polymeric nanofibers poly (vinyl alcohol) and poly (vinyl alcohol)/silica using indigenous electrospinning set up. Mater Res 16:824–830. CrossRefGoogle Scholar
  80. 80.
    Schreuder-Gibson H, Gibson P (2006) Applications of electrospun nanofibers in current and future materials. In: Reneker DH, Fong H (eds) Polymer nanofibers. ACS Symposium Series, Vol. 918, American Chemical Society Publication, Washington D.C, USA, page 121–136
  81. 81.
    Seah MP (1999) Quantitative AES and XPS: convergence between theory and experimental databases. J Electron Spectrosc Relat Phenom 100:55–73. CrossRefGoogle Scholar
  82. 82.
    Shin MK, Kim SI, Kim SJ, Kim S-K, Lee H (2006) Reinforcement of polymeric nanofibers by ferritin nanoparticles. Appl Phys Lett 88:193901. CrossRefGoogle Scholar
  83. 83.
    Silva GA (2004) Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303:1352–1355. CrossRefGoogle Scholar
  84. 84.
    Srinivasan G, Reneker DH (1995) Structure and morphology of small diameter electrospun aramid fibers. Polym Int 36:195–201. CrossRefGoogle Scholar
  85. 85.
    Sun Y, Yin Y, Mayers BT, Herricks T, Xia Y (2002) Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem Mater 14:4736–4745. CrossRefGoogle Scholar
  86. 86.
    Tan EPS, Lim CT (2006) Mechanical characterization of nanofibers – a review. Compos Sci Technol 66:1102–1111. CrossRefGoogle Scholar
  87. 87.
    Tan EPS, Ng SY, Lim CT (2005) Tensile testing of a single ultrafine polymeric fiber. Biomaterials 26:1453–1456. CrossRefGoogle Scholar
  88. 88.
    Thandavamoorthy S, Gopinath N, Ramkumar SS (2006) Self-assembled honeycomb polyurethane nanofibers. J Appl Polym Sci 101:3121–3124. CrossRefGoogle Scholar
  89. 89.
    Tian M, Gao Y, Liu Y, Liao Y, Xu R, Hedin NE, Fong H (2007) Bis-GMA/TEGDMA dental composites reinforced with electrospun nylon 6 nanocomposite nanofibers containing highly aligned fibrillar silicate single crystals. Polymer 48:2720–2728. CrossRefGoogle Scholar
  90. 90.
    Tomlins P (2004) Characterisation and design of tissue scaffolds. Woodhead Publishing, Oxford, UKGoogle Scholar
  91. 91.
    Torrisi A (2008) XPS study of five fluorinated compounds deposited on calcarenite stone. Appl Surf Sci 254:2650–2658. CrossRefGoogle Scholar
  92. 92.
    Wang X, Chen X, Yoon K, Fang D, Hsiao BS, Chu B (2005) High flux filtration medium based on nanofibrous substrate with hydrophilic nanocomposite coating. Environ Sci Technol 39:7684–7691. CrossRefGoogle Scholar
  93. 93.
    Xu LR, Li L, Lukehart CM, Kuai H (2007) Mechanical characterization of nanofiber-reinforced composite adhesives. J Nanosci Nanotechnol 7:2546–2548CrossRefGoogle Scholar
  94. 94.
    Yang F, Xu CY, Kotaki M, Wang S, Ramakrishna S (2004) Characterization of neural stem cells on electrospun poly(L-lactic acid) nanofibrous scaffold. J Biomater Sci Polym Ed 15:1483–1497. CrossRefGoogle Scholar
  95. 95.
    Yang T, Yang H, Zhen SJ, Huang CZ (2015) Hydrogen-bond-mediated in situ fabrication of AgNPs/Agar/PAN electrospun nanofibers as reproducible SERS substrates. ACS Appl Mater Interfaces 7:1586–1594. CrossRefGoogle Scholar
  96. 96.
    Yui H, Wu G, Sano H, Sumita M, Kino K (2006) Morphology and electrical conductivity of injection-molded polypropylene/carbon black composites with addition of high-density polyethylene. Polymer 47:3599–3608. CrossRefGoogle Scholar
  97. 97.
    Zhong WH, Li J, Xu LR, Michel JA, Sullivan LM, Lukehart CM (2004) Graphitic carbon nanofiber (GCNF)/polymer materials. I. GCNF/epoxy monoliths using hexanediamine linker molecules. J Nanosci Nanotechnol 4:794–802CrossRefGoogle Scholar
  98. 98.
    Zhou W, Wu Y, Wei F, Luo G, Qian W (2005) Elastic deformation of multiwalled carbon nanotubes in electrospun MWCNTs–PEO and MWCNTs–PVA nanofibers. Polymer 46:12689–12695. CrossRefGoogle Scholar
  99. 99.
    Zong X, Kim K, Fang D, Ran S, Hsiao BS, Chu B (2002) Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 43:4403–4412. CrossRefGoogle Scholar
  100. 100.
    Zong X, Ran S, Fang D, Hsiao BS, Chu B (2003) Control of structure, morphology and property in electrospun poly(glycolide-co-lactide) non-woven membranes via post-draw treatments. Polymer 44:4959–4967. CrossRefGoogle Scholar
  101. 101.
    Zong X, Ran S, Kim K-S, Fang D, Hsiao BS, Chu B (2003) Structure and morphology changes during in vitro degradation of electrospun poly(glycolide- co -lactide) nanofiber membrane. Biomacromolecules 4:416–423. CrossRefGoogle Scholar
  102. 102.
    Zussman E, Chen X, Ding W, Calabri L, Dikin DA, Quintana JP, Ruoff RS (2005) Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers. Carbon 43:2175–2185. CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Taha Roodbar Shojaei
    • 1
  • Abdollah Hajalilou
    • 2
  • Meisam Tabatabaei
    • 3
  • Hossein Mobli
    • 1
  • Mortaza Aghbashlo
    • 1
  1. 1.Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural ResourcesUniversity of TehranKarajIran
  2. 2.Faculty of Mechanical Engineering, Department of MaterialsUniversity of TabrizTabrizIran
  3. 3.Microbial Biotechnology DepartmentAgricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO)KarajIran

Personalised recommendations