Optical Spectroscopy for Characterization of Metal Oxide Nanofibers

  • Roman Viter
  • Igor Iatsunskyi
Living reference work entry


Optical spectroscopy methods are powerful nondestructive analytical methods for investigating electronic and optical properties of materials. Due to unique properties of metal oxide nanofibers, optical methods can provide important information about fundamental properties of metal oxide nanofibers, influence of structural properties to the optical and electronic ones, and applications of metal oxide nanofibers. Optical methods involve different techniques, using light from UV-Vis-IR regions and involving different parts of the materials (free electrons, ions, etc.) into interaction with light.

This chapter is dedicated to the characterization of metal oxide nanofibers using diffuse reflectance, photoluminescence, and Raman and Fourier transform infrared (FTIR) spectroscopy. General principles of these methods will be described. Calculation of the main fundamental parameters (band gap, defect levels, emission bands, etc.) will be discussed. Influence of structure parameters (such as nanofibers dimensions, chemical composition, dopants, etc.) on optical properties of metal oxide nanostructures will be demonstrated. Possible perspectives of applications of metal oxide nanofibers in optical devices will be shown.


Metal oxide nanofibers FTIR Raman Optical spectroscopy Photoluminescence spectroscopy 


  1. 1.
    Smith E, Dent G (2005) Modern Raman spectroscopy – a practical approach. Mod Raman Spectrosc – A Pract Approach.
  2. 2.
    Iatsunskyi I, Jancelewicz M, Nowaczyk G et al (2015) Atomic layer deposition TiO2 coated porous silicon surface: structural characterization and morphological features. Thin Solid Films 589:303–308. CrossRefGoogle Scholar
  3. 3.
    Ferraro JR, Nakamoto K, Brown CW (2003) Introductory Raman spectroscopy: second edition. Introd Raman Spectrosc Second Ed.
  4. 4.
    McCreery RL (2000) Raman spectroscopy for chemical analysis. Willey: New York.
  5. 5.
    Gremlich H-U (2000) Infrared and Raman spectroscopy. Ullmann’s Encycl Ind Chem.
  6. 6.
    Xie S, Iglesia E, Bell AT (2001) Effects of temperature on the raman spectra and dispersed oxides. J Phys Chem B 105:5144–5152. CrossRefGoogle Scholar
  7. 7.
    Cuscó R, Alarcón-Lladó E, Ibáñez J et al (2007) Temperature dependence of Raman scattering in ZnO. Phys Rev B 75:1–11. CrossRefGoogle Scholar
  8. 8.
    Khorasaninejad M, Walia J, Saini SS (2012) Enhanced first-order Raman scattering from arrays of vertical silicon nanowires. Nanotechnology 23:275706. CrossRefGoogle Scholar
  9. 9.
    Zhu KR, Zhang MS, Chen Q, Yin Z (2005) Size and phonon-confinement effects on low-frequency Raman mode of anatase TiO2 nanocrystal. Phys Lett Sect Gen Solid State Phys 340:220–227. Google Scholar
  10. 10.
    Meier C, Lüttjohann S, Kravets VG et al (2006) Raman properties of silicon nanoparticles. Phys E Low-Dimensional Syst Nanostruct 32:155–158. CrossRefGoogle Scholar
  11. 11.
    Iatsunskyi I, Pavlenko M, Viter R et al (2015) Tailoring the structural, optical, and photoluminescence properties of porous silicon/TiO 2 nanostructures. J Phys Chem C 119:7164–7171. CrossRefGoogle Scholar
  12. 12.
    Richter H, Wang ZP, Ley L (1981) The one phonon Raman spectrum in microcrystalline silicon. Solid State Commun 39:625–629. CrossRefGoogle Scholar
  13. 13.
    Campbell IH, Fauchet PM (1986) The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Commun 58:739–741. CrossRefGoogle Scholar
  14. 14.
    Iatsunskyi I, Kempiński M, Nowaczyk G et al (2015) Structural and XPS studies of PSi/TiO2 nanocomposites prepared by ALD and Ag-assisted chemical etching. Appl Surf Sci 347:777–783. CrossRefGoogle Scholar
  15. 15.
    Viter R, Chaaya AA, Iatsunskyi I et al (2015) Tuning of ZnO 1D nanostructures by atomic layer deposition and electrospinning for optical gas sensor applications. Nanotechnology 26:105501. CrossRefGoogle Scholar
  16. 16.
    Maensiri S, Nuansing W (2006) Thermoelectric oxide NaCo2O4 nanofibers fabricated by electrospinning. Mater Chem Phys 99:104–108. CrossRefGoogle Scholar
  17. 17.
    Nuansing W, Ninmuang S, Jarernboon W et al (2006) Structural characterization and morphology of electrospun TiO2 nanofibers. Mater Sci Eng B Solid-State Mater Adv Technol 131:147–155. CrossRefGoogle Scholar
  18. 18.
    Stuart B (2004) Infrared spectroscopy: fundamentals and applications. Vasa.
  19. 19.
    Doyle WM (1992) Principles and applications of Fourier transform infrared ( FTIR ) process analysis. Process Control Qual 2:11–41Google Scholar
  20. 20.
    NEAL J (1992) Fourier transform infrared spectroscopy. Encycl Mater Charact 1:416–427. Google Scholar
  21. 21.
    Ganzoury MA, Allam NK, Nicolet T, All C (2015) Introduction to Fourier transform infrared spectrometry. Renew Sust Energ Rev 50:1–8. CrossRefGoogle Scholar
  22. 22.
    Imran M, Haider S, Ahmad K et al (2017) Fabrication and characterization of zinc oxide nanofibers for renewable energy applications. Arab J Chem 10:S1067–S1072. CrossRefGoogle Scholar
  23. 23.
    Sharma S, Rani R, Rai R, Natarajan TS (2013) Synthesis and characterization of cuo electrospum nanofiber using poly(vinyl acetate)/Cu(CH3COO)2 annealing method. Adv Mater Lett 4:749–753. CrossRefGoogle Scholar
  24. 24.
    Asif SA, Khan S, Asiri AM (2014) Efficient solar photocatalyst based on cobalt oxide/iron oxide composite nanofibers for the detoxification of organic pollutants. Nanoscale Res Lett 9:510. CrossRefGoogle Scholar
  25. 25.
    Patil PT, Anwane RS, Kondawar SB (2015) Development of electrospun polyaniline/ZnO composite nanofibers for LPG sensing. Procedia Mater Sci 10:195–204. CrossRefGoogle Scholar
  26. 26.
    Viter R, Baleviciute I, Abou Chaaya A et al (2015) Optical properties of ultrathin Al2O3/ZnO nanolaminates. Thin Solid Films 594:96–100CrossRefGoogle Scholar
  27. 27.
    Nasr M, Viter R, Eid C et al (2016) Synthesis of novel ZnO/ZnAl2O4 multi co-centric nanotubes and their long-term stability in photocatalytic application. RSC Adv 6:103692–103699CrossRefGoogle Scholar
  28. 28.
    Nasr M, Viter R, Eid C et al (2017) Enhanced photocatalytic performance of novel electrospun BN/TiO2 composite nanofibers. New J Chem 41:81–89CrossRefGoogle Scholar
  29. 29.
    Feng YY, Hou WT, Zhang XQ et al (2011) Highly sensitive reversible light-driven switches using electrospun porous aluminum-doped zinc oxide nanofibers. J Phys Chem C 115:3956–3961. CrossRefGoogle Scholar
  30. 30.
    Chen RQ, Zhu PL, Deng LB et al (2014) Effect of aluminum doping on the growth and optical and electrical properties of ZnO Nanorods. Chem Plus Chem 79:743–750. Google Scholar
  31. 31.
    Cho Y-Y, Kuo C (2016) Optical and electrical characterization of electrospun Al-doped zinc oxide nanofibers as transparent electrodes. J Mater Chem C 4:7649–7657. CrossRefGoogle Scholar
  32. 32.
    Viter R, Katoch A, Kim SS (2014) Grain size dependent bandgap shift of SnO2 nanofibers. Met Mater Int 20:163–167CrossRefGoogle Scholar
  33. 33.
    Nalbandian MJ, Zhang M, Sanchez J et al (2016) Synthesis and optimization of Fe2O3 nanofibers for chromate adsorption from contaminated water sources. Chemosphere 144:975–981. CrossRefGoogle Scholar
  34. 34.
    Kuo C-H, Chang P-Y, Chen W-H, Lin S-J (2014) Synthesis of transparent metallic Sn-doped In2O3 nanowires: effects of doping concentration on photoelectric properties. Phys Status Solidi 211:488–493. CrossRefGoogle Scholar
  35. 35.
    Lu N, Shao C, Li X et al (2017) A facile fabrication of nitrogen-doped electrospun In2O3 nanofibers with improved visible-light photocatalytic activity. Appl Surf Sci 391(Part):668–676. CrossRefGoogle Scholar
  36. 36.
    Chae BW, Amna T, Hassan MS et al (2017) CeO2-Cu2O composite nanofibers: synthesis, characterization photocatalytic and electrochemical application. Adv Powder Technol 28:230–235. CrossRefGoogle Scholar
  37. 37.
    Lavanya T, Dutta M, Ramaprabhu S, Satheesh K (2017) Superior photocatalytic performance of graphene wrapped anatase/rutile mixed phase TiO2 nanofibers synthesized by a simple and facile route. J Environ Chem Eng 5:494–503. CrossRefGoogle Scholar
  38. 38.
    Sahay R, Sundaramurthy J, Kumar PS et al (2012) Synthesis and characterization of CuO nanofibers, and investigation for its suitability as blocking layer in ZnO NPs based dye sensitized solar cell and as photocatalyst in organic dye degradation. J Solid State Chem 186:261–267. CrossRefGoogle Scholar
  39. 39.
    Lepcha A, Maccato C, Mettenborger A et al (2015) Electrospun black titania nanofibers: influence of hydrogen plasma-induced disorder on the electronic structure and photoelectrochemical performance. J Phys Chem C 119:18835–18842. CrossRefGoogle Scholar
  40. 40.
    Hao YG, Shao XK, Li BX et al (2015) Mesoporous TiO2 nanofibers with controllable Au loadings for catalytic reduction of 4-nitrophenol. Mater Sci Semicond Process 40:621–630. CrossRefGoogle Scholar
  41. 41.
    Shen S, Wang X, Chen T et al (2014) Transfer of photoinduced electrons in anatase-rutile TiO2 determined by time-resolved mid-infrared spectroscopy. J Phys Chem C 118:12661–12668. CrossRefGoogle Scholar
  42. 42.
    George G, Anandhan S (2016) Tuning characteristics of Co3O4 nanofiber mats developed for electrochemical sensing of glucose and H2O2. Thin Solid Films 610:48–57. CrossRefGoogle Scholar
  43. 43.
    Chaaya AA, Bechelany M, Balme S, Miele P (2014) ZnO 1D nanostructures designed by combining atomic layer deposition and electrospinning for UV sensor applications. J Mater Chem A 2:20650–20658. CrossRefGoogle Scholar
  44. 44.
    Nasr M, Abou Chaaya A, Abboud N et al (2015) Photoluminescence: a very sensitive tool to detect the presence of anatase in rutile phase electrospun TiO2 nanofibers. Superlattice Microst 77:18–24CrossRefGoogle Scholar
  45. 45.
    Ahn K, Pham-Cong D, Choi HS et al (2016) Bandgap-designed TiO2/SnO2 hollow hierarchical nanofibers: synthesis, properties, and their photocatalytic mechanism. Curr Appl Phys 16:251–260. CrossRefGoogle Scholar
  46. 46.
    Zhang L, Li Y, Zhang Q, Wang H (2014) Well-dispersed Pt nanocrystals on the heterostructured TiO2/SnO2 nanofibers and the enhanced photocatalytic properties. Appl Surf Sci 319:21–28. CrossRefGoogle Scholar
  47. 47.
    Viter R, Iatsunskyi I, Fedorenko V et al (2016) Enhancement of electronic and optical properties of ZnO/Al2O3 nanolaminate coated electrospun nanofibers. J Phys Chem C 120:5124–5132. CrossRefGoogle Scholar
  48. 48.
    Santangelo S, Patanè S, Frontera P et al (2017) Effect of calcium- and/or aluminum-incorporation on morphological, structural and photoluminescence properties of electro-spun zinc oxide fibers. Mater Res Bull 92:9–18. CrossRefGoogle Scholar
  49. 49.
    Zhou T, Chen P, Hu S et al (2016) Enhanced yellow luminescence of amorphous Ga2O3 nanofibers with tunable crystallinity. Ceram Int 42:6467–6474. CrossRefGoogle Scholar
  50. 50.
    Ma G, Chen Z, Chen Z et al (2017) Constructing novel WO3/Fe(III) nanofibers photocatalysts with enhanced visible-light-driven photocatalytic activity via interfacial charge transfer effect. Mater Today Energy 3:45–52. CrossRefGoogle Scholar
  51. 51.
    Wang XL, Feng ZC, Shi JY et al (2010) Trap states and carrier dynamics of TiO2 studied by photoluminescence spectroscopy under weak excitation condition. Phys Chem Chem Phys 12:7083–7090. CrossRefGoogle Scholar
  52. 52.
    Das K, Sharma SN, Kumar M, De SK (2009) Morphology dependent luminescence properties of Co doped TiO2 nanostructures. J Phys Chem C 113:14783–14792. CrossRefGoogle Scholar
  53. 53.
    Kayaci F, Vempati S, Ozgit-Akgun C et al (2015) Transformation of polymer-ZnO core-shell nanofibers into ZnO hollow nanofibers: intrinsic defect reorganization in ZnO and its influence on the photocatalysis. Appl Catal B Environ 176–177:646–653. CrossRefGoogle Scholar
  54. 54.
    Molina-Mendoza AJ, Moya A, Frisenda R et al (2016) Highly responsive UV-photodetectors based on single electrospun TiO2 nanofibres. J Mater Chem C 4:10707–10714. CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Roman Viter
    • 1
  • Igor Iatsunskyi
    • 2
  1. 1.Institute of Atomic Physics and SpectroscopyUniversity of LatviaRigaLatvia
  2. 2.NanoBioMedical CentreAdam Mickiewicz UniversityPoznanPoland

Personalised recommendations