Molecular Basics on Genitourinary Malignancies

  • Timothy Hua-Tse Cheng
  • Wayne Lam
  • Jeremy Yuen-Chun TeohEmail author
Reference work entry


We constantly face diagnostic and therapeutic challenges in the management of genitourinary malignancies. The lack of highly sensitive and specific cancer markers often results in the need of invasive procedures for both diagnostic and surveillance purposes. Understanding the molecular basics of genitourinary malignancies is essential for personalized and precision medicine. Cancers originating from the same organ could have different biological behaviours and responses towards different types of treatment. An individualized treatment based on molecular features could potentially enhance clinical effectiveness while minimizing treatment-related side effects. In this book chapter, we shall summarize the current knowledge regarding the molecular basics of genitourinary malignancies including prostate cancer, urothelial carcinoma of the bladder and upper urinary tract, kidney cancer, penile cancer and testicular cancer. We hope, by the end of the book chapter, we would be able to provide you insights regarding the next step forward.


  1. Ahmad I, Sansom OJ, Leung HY. Exploring molecular genetics of bladder cancer: lessons learned from mouse models. Dis Model Mech. 2012;5(3):323–32.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ahmadiyeh N, Pomerantz MM, Grisanzio C, et al. 8q24 prostate, breast, and colon cancer risk loci show tissue-specific long-range interaction with MYC. Proc Natl Acad Sci USA. 2010;107(21):9742–6.PubMedCrossRefGoogle Scholar
  3. Almstrup K, Hoei-Hansen CE, Wirkner U, et al. Embryonic stem cell-like features of testicular carcinoma in situ revealed by genome-wide gene expression profiling. Cancer Res. 2004;64(14):4736–43.PubMedCrossRefGoogle Scholar
  4. Alves G, Fiedler W, Guenther E, et al. Determination of telomerase activity in squamous cell carcinoma of the penis. Int J Oncol. 2001;18(1):67–70.PubMedGoogle Scholar
  5. Amundadottir LT, Sulem P, Gudmundsson J, et al. A common variant associated with prostate cancer in European and African populations. Nat Genet. 2006;38(6):652–8.PubMedCrossRefGoogle Scholar
  6. Andre F, Pusztai L. Molecular classification of breast cancer: implications for selection of adjuvant chemotherapy. Nat Clin Pract Oncol. 2006;3(11):621–32.PubMedCrossRefGoogle Scholar
  7. Antonarakis ES, Lu C, Wang H, et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med. 2014;371(11):1028–38.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Atkin NB, Baker MC. Specific chromosome change, i(12p), in testicular tumours? Lancet. 1982;2(8311):1349.PubMedCrossRefGoogle Scholar
  9. Attard G, Parker C, Eeles RA, et al. Prostate cancer. Lancet. 2016;387(10013):70–82.PubMedCrossRefGoogle Scholar
  10. Bamford S, Dawson E, Forbes S, et al. The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. Br J Cancer. 2004;91(2):355–8.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Benichou J, Chow WH, McLaughlin JK, et al. Population attributable risk of renal cell cancer in Minnesota. Am J Epidemiol. 1998;148(5):424–30.PubMedCrossRefGoogle Scholar
  12. Bosl GJ, Dmitrovsky E, Reuter VE, et al. Isochromosome of the short arm of chromosome 12: clinically useful markers for male germ cell tumors. J Natl Cancer Inst. 1989;81(24):1874–8.PubMedCrossRefGoogle Scholar
  13. Bosl GJ, Ilson DH, Rodriguez E, et al. Clinical relevance of the i(12p) marker chromosome in germ cell tumors. J Natl Cancer Inst. 1994;86(5):349–55.PubMedCrossRefGoogle Scholar
  14. Braakhuis BJ, Tabor MP, Kummer JA, et al. A genetic explanation of Slaughter’s concept of field cancerization: evidence and clinical implications. Cancer Res. 2003;63(8):1727–30.PubMedGoogle Scholar
  15. Breast Cancer Linkage Consortium. Cancer risks in BRCA2 mutation carriers. J Natl Cancer Inst. 1999;91(15):1310–6.CrossRefGoogle Scholar
  16. Brittebo EB, Lofberg B, Tjalve H. Sites of metabolism of N-nitrosodiethylamine in mice. Chem Biol Interact. 1981;34(2):209–21.PubMedCrossRefGoogle Scholar
  17. Cairns P, Tokino K, Eby Y, et al. Homozygous deletions of 9p21 in primary human bladder tumors detected by comparative multiplex polymerase chain reaction. Cancer Res. 1994;54(6):1422–4.PubMedGoogle Scholar
  18. Cairns JP, Chiang PW, Ramamoorthy S, et al. A comparison between microsatellite and quantitative PCR analyses to detect frequent p16 copy number changes in primary bladder tumors. Clin Cancer Res. 1998;4(2):441–4.PubMedGoogle Scholar
  19. Campos RS, Lopes A, Guimaraes GC, et al. E-cadherin, MMP-2, and MMP-9 as prognostic markers in penile cancer: analysis of 125 patients. Urology. 2006;67(4):797–802.PubMedCrossRefGoogle Scholar
  20. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499(7456):43–9.CrossRefGoogle Scholar
  21. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature. 2014;507(7492):315–22.CrossRefGoogle Scholar
  22. Cancer Genome Atlas Research Network, Linehan WM, Spellman PT, et al. Comprehensive molecular characterization of papillary renal-cell carcinoma. N Engl J Med. 2016;374(2):135–45.CrossRefGoogle Scholar
  23. Castillo-Martin M, Domingo-Domenech J, Karni-Schmidt O, et al. Molecular pathways of urothelial development and bladder tumorigenesis. Urol Oncol. 2010;28(4):401–8.PubMedCrossRefGoogle Scholar
  24. Cheung HH, Davis AJ, Lee TL, et al. Methylation of an intronic region regulates miR-199a in testicular tumor malignancy. Oncogene. 2011;30(31):3404–15.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Cheung HH, Yang Y, Lee TL, et al. Hypermethylation of genes in testicular embryonal carcinomas. Br J Cancer. 2016;114(2):230–6.PubMedCrossRefGoogle Scholar
  26. Chial H. Proto-oncogenes to oncogenes to cancer. Nat Educ. 2008a;1(1):33.Google Scholar
  27. Chial H. Tumor suppressor (TS) genes and the two-hit hypothesis. Nat Educ. 2008b;1(1):177.Google Scholar
  28. Chow NH, Cairns P, Eisenberger CF, et al. Papillary urothelial hyperplasia is a clonal precursor to papillary transitional cell bladder cancer. Int J Cancer. 2000;89(6):514–8.PubMedCrossRefGoogle Scholar
  29. Crockford GP, Linger R, Hockley S, et al. Genome-wide linkage screen for testicular germ cell tumour susceptibility loci. Hum Mol Genet. 2006;15(3):443–51.PubMedCrossRefGoogle Scholar
  30. Dakubo GD, Jakupciak JP, Birch-Machin MA, et al. Clinical implications and utility of field cancerization. Cancer Cell Int. 2007;7:2.PubMedPubMedCentralCrossRefGoogle Scholar
  31. di Martino E, Tomlinson DC, Knowles MA. A decade of FGF receptor research in bladder cancer: past, present, and future challenges. Adv Urol. 2012;2012:429213.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Eeles RA, Kote-Jarai Z, Giles GG, et al. Multiple newly identified loci associated with prostate cancer susceptibility. Nat Genet. 2008;40(3):316–21.PubMedCrossRefGoogle Scholar
  33. Eeles R, Goh C, Castro E, et al. The genetic epidemiology of prostate cancer and its clinical implications. Nat Rev Urol. 2014;11(1):18–31.PubMedCrossRefGoogle Scholar
  34. Einhorn LH, Brames MJ, Heinrich MC, et al. Phase II study of imatinib mesylate in chemotherapy refractory germ cell tumors expressing KIT. Am J Clin Oncol. 2006;29(1):12–3.PubMedCrossRefGoogle Scholar
  35. Ewing CM, Ray AM, Lange EM, et al. Germline mutations in HOXB13 and prostate-cancer risk. N Engl J Med. 2012;366(2):141–9.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Feldman DR, Iyer G, Van Alstine L, et al. Presence of somatic mutations within PIK3CA, AKT, RAS, and FGFR3 but not BRAF in cisplatin-resistant germ cell tumors. Clin Cancer Res. 2014;20(14):3712–20.PubMedCrossRefGoogle Scholar
  37. Ferlay J, Soerjomataram I, Ervik M, et al. GLOBOCAN 2012 v1.0, cancer incidence and mortality worldwide: IARC CancerBase No. 11 [Internet]. Lyon: International Agency for Research on Cancer; 2013. Available from Accessed on 23 Sept 2016.
  38. Figueroa JD, Han SS, Garcia-Closas M, et al. Genome-wide interaction study of smoking and bladder cancer risk. Carcinogenesis. 2014;35(8):1737–44.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Freedman ML, Monteiro AN, Gayther SA, et al. Principles for the post-GWAS functional characterization of cancer risk loci. Nat Genet. 2011;43(6):513–8.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Garcia-Closas M, Ye Y, Rothman N, et al. A genome-wide association study of bladder cancer identifies a new susceptibility locus within SLC14A1, a urea transporter gene on chromosome 18q12.3. Hum Mol Genet. 2011;20(21):4282–9.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366(10):883–92.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Gnarra JR, Tory K, Weng Y, et al. Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat Genet. 1994;7(1):85–90.PubMedCrossRefGoogle Scholar
  43. Goldgar DE, Easton DF, Cannon-Albright LA, et al. Systematic population-based assessment of cancer risk in first-degree relatives of cancer probands. J Natl Cancer Inst. 1994;86(21):1600–8.PubMedCrossRefGoogle Scholar
  44. Golijanin D, Tan JY, Kazior A, et al. Cyclooxygenase-2 and microsomal prostaglandin E synthase-1 are overexpressed in squamous cell carcinoma of the penis. Clin Cancer Res. 2004;10(3):1024–31.PubMedCrossRefGoogle Scholar
  45. Grossman HB, Liebert M, Antelo M, et al. p53 and RB expression predict progression in T1 bladder cancer. Clin Cancer Res. 1998;4(4):829–34.PubMedGoogle Scholar
  46. Hakimi AA, Reznik E, Lee CH, et al. An integrated metabolic atlas of clear cell renal cell carcinoma. Cancer Cell. 2016;29(1):104–16.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Heideman DA, Waterboer T, Pawlita M, et al. Human papillomavirus-16 is the predominant type etiologically involved in penile squamous cell carcinoma. J Clin Oncol. 2007;25(29):4550–6.PubMedCrossRefGoogle Scholar
  49. Hemminki K. Familial risk and familial survival in prostate cancer. World J Urol. 2012;30(2):143–8.PubMedCrossRefGoogle Scholar
  50. Henrion M, Frampton M, Scelo G, et al. Common variation at 2q22.3 (ZEB2) influences the risk of renal cancer. Hum Mol Genet. 2013;22(4):825–31.PubMedCrossRefGoogle Scholar
  51. Honecker F, Wermann H, Mayer F, et al. Microsatellite instability, mismatch repair deficiency, and BRAF mutation in treatment-resistant germ cell tumors. J Clin Oncol. 2009;27(13):2129–36.PubMedCrossRefGoogle Scholar
  52. Hornigold N, Devlin J, Davies AM, et al. Mutation of the 9q34 gene TSC1 in sporadic bladder cancer. Oncogene. 1999;18(16):2657–61.PubMedCrossRefGoogle Scholar
  53. International Cancer Genome Consortium, Hudson TJ, Anderson W, et al. International network of cancer genome projects. Nature. 2010;464(7291):993–8.CrossRefGoogle Scholar
  54. Isaacs JS, Jung YJ, Mole DR, et al. HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer Cell. 2005;8(2):143–53.PubMedCrossRefGoogle Scholar
  55. Jansson KF, Akre O, Garmo H, et al. Concordance of tumor differentiation among brothers with prostate cancer. Eur Urol. 2012;62(4):656–61.PubMedCrossRefGoogle Scholar
  56. Juric D, Sale S, Hromas RA, et al. Gene expression profiling differentiates germ cell tumors from other cancers and defines subtype-specific signatures. Proc Natl Acad Sci USA. 2005;102(49):17763–8.PubMedCrossRefGoogle Scholar
  57. Kaelin WG. Von Hippel-Lindau disease. Annu Rev Pathol. 2007;2:145–73.PubMedCrossRefGoogle Scholar
  58. Karayi MK, Markham AF. Molecular biology of prostate cancer. Prostate Cancer Prostatic Dis. 2004;7(1):6–20.PubMedCrossRefGoogle Scholar
  59. Kiemeney LA. Hereditary bladder cancer. Scand J Urol Nephrol Suppl. 2008;42:(218):110–5.CrossRefGoogle Scholar
  60. Kiemeney LA, Thorlacius S, Sulem P, et al. Sequence variant on 8q24 confers susceptibility to urinary bladder cancer. Nat Genet. 2008;40(11):1307–12.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Kiemeney LA, Sulem P, Besenbacher S, et al. A sequence variant at 4p16.3 confers susceptibility to urinary bladder cancer. Nat Genet. 2010;42(5):415–9.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Kote-Jarai Z, Leongamornlert D, Tymrakiewicz M, et al. Mutation analysis of the MSMB gene in familial prostate cancer. Br J Cancer. 2010;102(2):414–8.PubMedCrossRefGoogle Scholar
  63. Kote-Jarai Z, Leongamornlert D, Saunders E, et al. BRCA2 is a moderate penetrance gene contributing to young-onset prostate cancer: implications for genetic testing in prostate cancer patients. Br J Cancer. 2011a;105(8):1230–4.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Kote-Jarai Z, Olama AA, Giles GG, et al. Seven prostate cancer susceptibility loci identified by a multi-stage genome-wide association study. Nat Genet. 2011b;43(8):785–91.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Koul S, McKiernan JM, Narayan G, et al. Role of promoter hypermethylation in Cisplatin treatment response of male germ cell tumors. Mol Cancer. 2004;3:16.PubMedPubMedCentralCrossRefGoogle Scholar
  66. L’Hote CG, Knowles MA. Cell responses to FGFR3 signalling: growth, differentiation and apoptosis. Exp Cell Res. 2005;304(2):417–31.PubMedCrossRefGoogle Scholar
  67. Lamy P, Nordentoft I, Birkenkamp-Demtroder K, et al. Paired exome analysis reveals clonal evolution and potential therapeutic targets in urothelial carcinoma. Cancer Res. 2016;76(19):5894–906.PubMedCrossRefGoogle Scholar
  68. Lawrence MS, Stojanov P, Polak P, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 2013;499(7457):214–8.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Lee HN, Na HK, Surh YJ. Resolution of inflammation as a novel chemopreventive strategy. Semin Immunopathol. 2013;35(2):151–61.PubMedCrossRefGoogle Scholar
  70. Leongamornlert D, Mahmud N, Tymrakiewicz M, et al. Germline BRCA1 mutations increase prostate cancer risk. Br J Cancer. 2012;106(10):1697–701.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Lichtenstein P, Holm NV, Verkasalo PK, et al. Environmental and heritable factors in the causation of cancer – analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med. 2000;343(2):78–85.PubMedCrossRefGoogle Scholar
  72. Linehan WM, Pinto PA, Bratslavsky G, et al. Hereditary kidney cancer: unique opportunity for disease-based therapy. Cancer. 2009;115(10 Suppl):2252–61.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Linehan WM, Srinivasan R, Schmidt LS. The genetic basis of kidney cancer: a metabolic disease. Nat Rev Urol. 2010;7(5):277–85.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Lipworth L, Tarone RE, Lund L, et al. Epidemiologic characteristics and risk factors for renal cell cancer. Clin Epidemiol. 2009;1:33–43.PubMedPubMedCentralGoogle Scholar
  75. Lize M, Pilarski S, Dobbelstein M. E2F1-inducible microRNA 449a/b suppresses cell proliferation and promotes apoptosis. Cell Death Differ. 2010;17(3):452–8.PubMedCrossRefGoogle Scholar
  76. Martins AC, Faria SM, Cologna AJ, et al. Immunoexpression of p53 protein and proliferating cell nuclear antigen in penile carcinoma. J Urol. 2002;167(1):89–92; discussion 92–3PubMedCrossRefGoogle Scholar
  77. Masson N, Ratcliffe PJ. Hypoxia signaling pathways in cancer metabolism: the importance of co-selecting interconnected physiological pathways. Cancer Metab. 2014;2(1):3.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Matsuda K, Takahashi A, Middlebrooks CD, et al. Genome-wide association study identified SNP on 15q24 associated with bladder cancer risk in Japanese population. Hum Mol Genet. 2015;24(4):1177–84.PubMedCrossRefGoogle Scholar
  79. Moss TJ, Qi Y, Xi L, et al. Comprehensive genomic characterization of upper tract urothelial carcinoma. Eur Urol. 2017;72(4):641–9.PubMedCrossRefGoogle Scholar
  80. Mostafa MH, Sheweita SA, O’Connor PJ. Relationship between schistosomiasis and bladder cancer. Clin Microbiol Rev. 1999;12(1):97–111.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Mottet N, Bellmunt J, Bolla M, et al. EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol. 2016.
  82. Mullane SA, Werner L, Rosenberg J, et al. Correlation of APOBEC mRNA expression with overall survival and PD-L1 expression in urothelial carcinoma. Sci Rep. 2016;6:27702.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Muneer A, Kayes O, Ahmed HU, et al. Molecular prognostic factors in penile cancer. World J Urol. 2009;27(2):161–7.PubMedCrossRefGoogle Scholar
  84. Nathanson KL, Kanetsky PA, Hawes R, et al. The Y deletion gr/gr and susceptibility to testicular germ cell tumor. Am J Hum Genet. 2005;77(6):1034–43.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Oh SC, Park YY, Park ES, et al. Prognostic gene expression signature associated with two molecularly distinct subtypes of colorectal cancer. Gut. 2012;61(9):1291–8.PubMedCrossRefGoogle Scholar
  86. Oliveira-Barros EG, Nicolau-Neto P, Da Costa NM, et al. Prostate cancer molecular profiling: the Achilles heel for the implementation of precision medicine. Cell Biol Int. 2017;41:1239.PubMedCrossRefGoogle Scholar
  87. Parkin DM, Muir CS. Cancer incidence in five continents. Comparability and quality of data. IARC Sci Publ. 1992;6:(120):45–173.Google Scholar
  88. Peltomaki P. DNA methylation changes in human testicular cancer. Biochim Biophys Acta. 1991;1096(3):187–96.PubMedCrossRefGoogle Scholar
  89. Peruzzi B, Bottaro DP. Targeting the c-Met signaling pathway in cancer. Clin Cancer Res. 2006;12(12):3657–60.PubMedCrossRefGoogle Scholar
  90. Peter M, Rosty C, Couturier J, et al. MYC activation associated with the integration of HPV DNA at the MYC locus in genital tumors. Oncogene. 2006;25(44):5985–93.PubMedCrossRefGoogle Scholar
  91. Pietrzak P, Hadway P, Corbishley CM, et al. Is the association between balanitis xerotica obliterans and penile carcinoma underestimated? BJU Int. 2006;98(1):74–6.PubMedCrossRefGoogle Scholar
  92. Poetsch M, Hemmerich M, Kakies C, et al. Alterations in the tumor suppressor gene p16(INK4A) are associated with aggressive behavior of penile carcinomas. Virchows Arch. 2011;458(2):221–9.PubMedCrossRefGoogle Scholar
  93. Pomerantz MM, Beckwith CA, Regan MM, et al. Evaluation of the 8q24 prostate cancer risk locus and MYC expression. Cancer Res. 2009;69(13):5568–74.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Powell IJ. Epidemiology and pathophysiology of prostate cancer in African-American men. J Urol. 2007;177(2):444–9.PubMedCrossRefGoogle Scholar
  95. Protzel C, Spiess PE. Molecular research in penile cancer-lessons learned from the past and bright horizons of the future? Int J Mol Sci. 2013;14(10):19494–505.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Protzel C, Knoedel J, Zimmermann U, et al. Expression of proliferation marker Ki67 correlates to occurrence of metastasis and prognosis, histological subtypes and HPV DNA detection in penile carcinomas. Histol Histopathol. 2007;22(11):1197–204.PubMedGoogle Scholar
  97. Protzel C, Kakies C, Kleist B, et al. Down-regulation of the metastasis suppressor protein KAI1/CD82 correlates with occurrence of metastasis, prognosis and presence of HPV DNA in human penile squamous cell carcinoma. Virchows Arch. 2008;452(4):369–75.PubMedCrossRefGoogle Scholar
  98. Purdue MP, Ye Y, Wang Z, et al. A genome-wide association study of renal cell carcinoma among African Americans. Cancer Epidemiol Biomarkers Prev. 2014;23(1):209–14.PubMedCrossRefGoogle Scholar
  99. Rafnar T, Sulem P, Stacey SN, et al. Sequence variants at the TERT-CLPTM1L locus associate with many cancer types. Nat Genet. 2009;41(2):221–7.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Rapley EA, Turnbull C, Al Olama AA, et al. A genome-wide association study of testicular germ cell tumor. Nat Genet. 2009;41(7):807–10.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Reulen RC, Kellen E, Buntinx F, et al. A meta-analysis on the association between bladder cancer and occupation. Scand J Urol Nephrol Suppl. 2008;42:(218):64–78.CrossRefGoogle Scholar
  102. Roberts SA, Gordenin DA. Hypermutation in human cancer genomes: footprints and mechanisms. Nat Rev Cancer. 2014;14(12):786–800.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Rodriguez S, Jafer O, Goker H, et al. Expression profile of genes from 12p in testicular germ cell tumors of adolescents and adults associated with i(12p) and amplification at 12p11.2-p12.1. Oncogene. 2003;22(12):1880–91.PubMedCrossRefGoogle Scholar
  104. Rothman N, Garcia-Closas M, Chatterjee N, et al. A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci. Nat Genet. 2010;42(11):978–84.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Rous P. A sarcoma of the fowl transmissible by an agent separable from the tumor cells. J Exp Med. 1911;13(4):397–411.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Rous P. Transmission of a malignant new growth by means of a cell-free filtrate. Conn Med. 1973;37(10):526.PubMedGoogle Scholar
  107. Ruppert JM, Tokino K, Sidransky D. Evidence for two bladder cancer suppressor loci on human chromosome 9. Cancer Res. 1993;53(21):5093–5.PubMedGoogle Scholar
  108. Schmidt L, Duh FM, Chen F, et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet. 1997;16(1):68–73.PubMedCrossRefGoogle Scholar
  109. Schmidt L, Junker K, Nakaigawa N, et al. Novel mutations of the MET proto-oncogene in papillary renal carcinomas. Oncogene. 1999;18(14):2343–50.PubMedCrossRefGoogle Scholar
  110. Semenza GL. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J Clin Invest. 2013;123(9):3664–71.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Sfakianos JP, Cha EK, Iyer G, et al. Genomic characterization of upper tract urothelial carcinoma. Eur Urol. 2015;68(6):970–7.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Sheikine Y, Genega E, Melamed J, et al. Molecular genetics of testicular germ cell tumors. Am J Cancer Res. 2012;2(2):153–67.PubMedPubMedCentralGoogle Scholar
  113. Sibley K, Stern P, Knowles MA. Frequency of fibroblast growth factor receptor 3 mutations in sporadic tumours. Oncogene. 2001;20(32):4416–8.PubMedCrossRefGoogle Scholar
  114. Sidransky D, Frost P, Von Eschenbach A, et al. Clonal origin of bladder cancer. N Engl J Med. 1992;326(11):737–40.PubMedCrossRefGoogle Scholar
  115. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30.CrossRefGoogle Scholar
  116. Skotheim RI, Lind GE, Monni O, et al. Differentiation of human embryonal carcinomas in vitro and in vivo reveals expression profiles relevant to normal development. Cancer Res. 2005;65(13):5588–98.PubMedCrossRefGoogle Scholar
  117. Smiraglia DJ, Szymanska J, Kraggerud SM, et al. Distinct epigenetic phenotypes in seminomatous and nonseminomatous testicular germ cell tumors. Oncogene. 2002;21(24):3909–16.PubMedCrossRefGoogle Scholar
  118. Sorlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001;98(19):10869–74.PubMedCrossRefGoogle Scholar
  119. Stankiewicz E, Prowse DM, Ng M, et al. Alternative HER/PTEN/Akt pathway activation in HPV positive and negative penile carcinomas. PLoS One. 2011;6(3):e17517.PubMedPubMedCentralCrossRefGoogle Scholar
  120. Stankiewicz E, Ng M, Cuzick J, et al. The prognostic value of Ki-67 expression in penile squamous cell carcinoma. J Clin Pathol. 2012;65(6):534–7.PubMedCrossRefGoogle Scholar
  121. Suriano F, Altobelli E, Sergi F, et al. Bladder cancer after radiotherapy for prostate cancer. Rev Urol. 2013;15(3):108–12.PubMedPubMedCentralGoogle Scholar
  122. Tan DS, Mok TS, Rebbeck TR. Cancer genomics: diversity and disparity across ethnicity and geography. J Clin Oncol. 2016;34(1):91–101.PubMedCrossRefGoogle Scholar
  123. Thompson D, Easton D, Breast Cancer Linkage Consortium. Variation in cancer risks, by mutation position, in BRCA2 mutation carriers. Am J Hum Genet. 2001;68(2):410–9.PubMedPubMedCentralCrossRefGoogle Scholar
  124. Tian S, Wang C, An MW. Test on existence of histology subtype-specific prognostic signatures among early stage lung adenocarcinoma and squamous cell carcinoma patients using a Cox-model based filter. Biol Direct. 2015;10:15.PubMedPubMedCentralCrossRefGoogle Scholar
  125. Tomlinson IP, Alam NA, Rowan AJ, et al. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet. 2002;30(4):406–10.PubMedCrossRefGoogle Scholar
  126. Vermeulen SH, Hanum N, Grotenhuis AJ, et al. Recurrent urinary tract infection and risk of bladder cancer in the Nijmegen bladder cancer study. Br J Cancer. 2015;112(3):594–600.PubMedCrossRefGoogle Scholar
  127. Vlaovic P, Jewett MA. Cyclophosphamide-induced bladder cancer. Can J Urol. 1999;6(2):745–8.PubMedGoogle Scholar
  128. Wang M, Li Z, Chu H, et al. Genome-wide association study of bladder cancer in a Chinese cohort reveals a new susceptibility locus at 5q12.3. Cancer Res. 2016;76(11):3277–84.PubMedCrossRefGoogle Scholar
  129. Wermann H, Stoop H, Gillis AJ, et al. Global DNA methylation in fetal human germ cells and germ cell tumours: association with differentiation and cisplatin resistance. J Pathol. 2010;221(4):433–42.PubMedGoogle Scholar
  130. Whitaker HC, Kote-Jarai Z, Ross-Adams H, et al. The rs10993994 risk allele for prostate cancer results in clinically relevant changes in microseminoprotein-beta expression in tissue and urine. PLoS One. 2010a;5(10):e13363.PubMedPubMedCentralCrossRefGoogle Scholar
  131. Whitaker HC, Warren AY, Eeles R, et al. The potential value of microseminoprotein-beta as a prostate cancer biomarker and therapeutic target. Prostate. 2010b;70(3):333–40.PubMedGoogle Scholar
  132. Williamson MP, Elder PA, Shaw ME, et al. p16 (CDKN2) is a major deletion target at 9p21 in bladder cancer. Hum Mol Genet. 1995;4(9):1569–77.PubMedCrossRefGoogle Scholar
  133. Woldu SL, Amatruda JF, Bagrodia A. Testicular germ cell tumor genomics. Curr Opin Urol. 2017;27(1):41–7.PubMedPubMedCentralCrossRefGoogle Scholar
  134. Wong MC, Goggins WB, Wang HH, et al. Global incidence and mortality for prostate cancer: analysis of temporal patterns and trends in 36 countries. Eur Urol. 2016;70(5):862–74.PubMedCrossRefGoogle Scholar
  135. Wu X, Ros MM, Gu J, et al. Epidemiology and genetic susceptibility to bladder cancer. BJU Int. 2008;102(9 Pt B):1207–15.PubMedCrossRefGoogle Scholar
  136. Wu X, Scelo G, Purdue MP, et al. A genome-wide association study identifies a novel susceptibility locus for renal cell carcinoma on 12p11.23. Hum Mol Genet. 2012;21(2):456–62.PubMedCrossRefGoogle Scholar
  137. zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer. 2002;2(5):342–50.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Timothy Hua-Tse Cheng
    • 1
  • Wayne Lam
    • 2
  • Jeremy Yuen-Chun Teoh
    • 3
    Email author
  1. 1.Department of Chemical PathologyPrince of Wales Hospital, The Chinese University of Hong KongHong KongHong Kong
  2. 2.Division of Urology, Department of SurgeryQueen Mary Hospital, The University of Hong KongHong KongHong Kong
  3. 3.S.H. Ho Urology Centre, Department of SurgeryPrince of Wales Hospital, The Chinese University of Hong KongHong KongHong Kong

Section editors and affiliations

  • Maximilian Burger
    • 1
  • Axel Stuart Merseburger
    • 2
  1. 1.Klinik und Poliklinik für UrologieUniversität Regensburg/Caritas-Krankenhaus St. JosefRegensburgGermany
  2. 2.Department of UrologyUniversity Hospital of Schleswig-HolsteinLuebeckGermany

Personalised recommendations