Inkjet Printing for Biofabrication

  • Xinda Li
  • Jianwei Chen
  • Boxun Liu
  • Xiong Wang
  • Dongni Ren
  • Tao Xu
Living reference work entry
Part of the Reference Series in Biomedical Engineering book series (RSBE)

Abstract

Inkjet printing is a noncontact printing technology with high resolution, high throughput, and considerable reproducibility. Instead of printing normal ink, inkjet technology is also applied in the field of biofabrication to print living cells and other biological factors. Cell viability and function were demonstrated to be sustained after printing. Besides two dimensional cell patterns, three-dimensional cell-laden hydrogel structures can also be inkjet printed through cross-linking. Special phenomena such as the temporary permeability change of cell membranes were also observed during printing procedures, thus making it possible to achieve gene transfection through inkjet printing. Inkjet-printed biomolecule patterns with gradient concentration were also used to direct cell fates. Since the diversity of bioink and the capability of fabricating complex structures, inkjet bioprinting behaves as an effective tool in the field of biofabrication. The applications of inkjet printing include but not limit to drug formulation, tissue repair, and cancer research.

References

  1. Arai K, Iwanaga S, Toda H, Genci C, Nishiyama Y, Nakamura M (2011) Three-dimensional inkjet biofabrication based on designed images. Biofabrication 3(3):034113CrossRefPubMedGoogle Scholar
  2. Biase MD, Saunders RE, Tirelli N, Derby B (2011) Inkjet printing and cell seeding thermoreversible photocurable gel structures. Soft Matter 7(6):2639–2646CrossRefGoogle Scholar
  3. Campbell P, Miller EG, Walker L, Weiss L (2005) Engineered spatial patterns of FGF-2 immobilized on fibrin direct cell organization. Biomaterials 26(33):6762CrossRefPubMedGoogle Scholar
  4. Canfield B, Holstun C, Yeun KWW (1997) Method and apparatus for reducing the size of drops ejected from a thermal ink jet printhead. US, US5673069Google Scholar
  5. Cheow WS, Kiew TY, Hadinoto K (2015) Combining inkjet printing and amorphous nanonization to prepare personalized dosage forms of poorly-soluble drugs. Eur J Pharm Biopharm 96:314–321CrossRefPubMedGoogle Scholar
  6. Choi WS, Ha D, Park S, Kim T (2011) Synthetic multicellular cell-to-cell communication in inkjet printed bacterial cell systems. Biomaterials 32(10):2500–2507CrossRefPubMedGoogle Scholar
  7. Christensen K, Xu C, Chai W, Zhang Z, Fu J, Huang Y (2015) Freeform inkjet printing of cellular structures with bifurcations. Biotechnol Bioeng 112(5):1047CrossRefPubMedGoogle Scholar
  8. Cui X, Boland T (2009) Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 30(31):6221–6227CrossRefPubMedGoogle Scholar
  9. Cui X, Dean D, Ruggeri ZM, Boland T (2010) Cell damage evaluation of thermal inkjet printed chinese hamster ovary cells. Biotechnol Bioeng 106(6):963–969CrossRefPubMedGoogle Scholar
  10. Cui X, Boland T, D D'Lima D, Martin K (2012a) Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat Drug Deliv Formul 6(2):149–155CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cui X, Breitenkamp K, Finn MG, Lotz M, D’Lima DD (2012b) Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng A 18(11–12):1304CrossRefGoogle Scholar
  12. Cui X, Gao G, Qiu Y (2013) Accelerated myotube formation using bioprinting technology for biosensor applications. Biotechnol Lett 35(3):315CrossRefPubMedGoogle Scholar
  13. Cui X, Gao G, Yonezawa T, Dai G (2014) Human cartilage tissue fabrication using three-dimensional inkjet printing technology. J Vis Exp 2014(88):e51294Google Scholar
  14. Cummins G, Desmulliez MPY (2012) Inkjet printing of conductive materials: a review. Circuit World 38(4):193–213CrossRefGoogle Scholar
  15. Dababneh AB, Ozbolat IT (2014) Bioprinting technology: a current state-of-the-art review. J Manuf Sci Eng 136(6):061016CrossRefGoogle Scholar
  16. de Gans BJ, Duineveld P, Schubert U (2004) Inkjet printing of polymers: state of the art and future developments. Adv Mater 16(3):203–213CrossRefGoogle Scholar
  17. Ferris C, Gilmore K, Beirne S, Mccallum D, Wallace G, Inhetpanhuis M (2013) Bio-ink for on-demand printing of living cells. Biomaterials 1(2):224–230CrossRefGoogle Scholar
  18. Gao G, Schilling AF, Yonezawa T, Wang J, Dai G, Cui X (2014) Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells. Biotechnol J 9(10):1304CrossRefPubMedGoogle Scholar
  19. Gudapati H, Dey M, Ozbolat I (2016) A comprehensive review on droplet-based bioprinting: past, present and future. Biomaterials 102:20CrossRefPubMedGoogle Scholar
  20. Hauschild S, Dr UL, Rumplecker A, Borchert U, Rank A, Schubert R et al (2005) Direct preparation and loading of lipid and polymer vesicles using inkjets. Small 1(12):1177–1180CrossRefPubMedGoogle Scholar
  21. Hendriks J, Visser CW, Henke S, Leijten J, Saris DBF, Sun C et al (2015) Optimizing cell viability in droplet-based cell deposition. Sci Rep 5:11304CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hermanson O, Jepsen K, Rosenfeld MG (2002) N-cor controls differentiation of neural stem cells into astrocytes. Nature 419(6910):934CrossRefPubMedGoogle Scholar
  23. Hock SW, Johnson DA, Van Veen MA (1996) Print quality optimization for a color ink-jet printer by using a larger nozzle for the black ink only. US, US 5521622 AGoogle Scholar
  24. Horváth L, Umehara Y, Jud C, Blank F, Petrifink A, Rothenrutishauser B (2015) Engineering an in vitro air-blood barrier by 3d bioprinting. Sci Rep 5:7974CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hsu HY, Toth S, Simpson GJ, Harris MT (2015) Drop printing of pharmaceuticals: effect of molecular weight on PEG coated-naproxen/PEG 3350 solid dispersions. AICHE J 61(12):4502–4508CrossRefPubMedPubMedCentralGoogle Scholar
  26. Huang YS (2011) Tissue regeneration is a key tool for burn tissue repair. Zhonghua Shao Shang Za Zhi 27(1):6–7PubMedGoogle Scholar
  27. Hudson KR, Cowan PB, Gondek JS (2000) Ink drop volume variance compensation for inkjet printing. US 6042211 AGoogle Scholar
  28. Ilkhanizadeh S, Teixeira AI, Hermanson O (2007) Inkjet printing of macromolecules on hydrogels to steer neural stem cell differentiation. Biomaterials 28(27):3936–3943CrossRefPubMedGoogle Scholar
  29. Johe KK, Hazel TG, Muller T, Dugich-Djordjevic MM, Mckay RD (1996) Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Dev 10(24):3129–3140CrossRefPubMedGoogle Scholar
  30. Kamisuki S, Hagata T, Tezuka C, Nose Y (1998) A low power, small, electrostatically-driven commercial inkjet head. In: Proceedings of the eleventh international workshop on MICRO electro mechanical systems, 1998. Mems 98. IEEE, pp 63–68Google Scholar
  31. Kamisuki S, Fujii M, Takekoshi T, Tezuka C (2000) A high resolution, electrostatically-driven commercial inkjet head. In: Proceedings of the thirteenth international conference on MICRO electro mechanical systems. IEEE, pp 793–798Google Scholar
  32. Kazuhiko O, Yasuhiro O, Shuji G, Uchida MK (2002) Contractile responses of smooth muscle cells differentiated from rat neural stem cells. J Physiol 540(Pt 1):139Google Scholar
  33. Ker ED, Chu B, Phillippi JA, Gharaibeh B, Huard J, Weiss LE et al (2011a) Engineering spatial control of multiple differentiation fates within a stem cell population. Biomaterials 32(13):3413CrossRefPubMedPubMedCentralGoogle Scholar
  34. Ker ED, Nain AS, Weiss LE, Wang J, Suhan J, Amon CH et al (2011b) Bioprinting of growth factors onto aligned sub-micron fibrous scaffolds for simultaneous control of cell differentiation and alignment. Biomaterials 32(32):8097–8107CrossRefPubMedGoogle Scholar
  35. Kyser EL, Sears, SB (1980) Method and apparatus for recording with writing fluids and drop projection means therefor. US, US 4189734 AGoogle Scholar
  36. Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926CrossRefPubMedGoogle Scholar
  37. Le HP (1998) Progress and trends in ink-jet printing technology. J Imaging Sci Technol 42(1):49–62Google Scholar
  38. Matsusaki M, Sakaue K, Kadowaki K, Akashi M (2013) Three-dimensional human tissue chips fabricated by rapid and automatic inkjet cell printing. Adv Healthc Mater 2(4):534CrossRefPubMedGoogle Scholar
  39. Meléndez PA, Kane KM, Ashvar CS et al (2008) Thermal inkjet application in the preparation of oral dosage forms: dispensing of prednisolone solutions and polymorphic characterization by solid-state spectroscopic techniques. J Pharm Sci 97(7):2619–2636CrossRefPubMedGoogle Scholar
  40. Miller ED, Fisher GW, Weiss LE, Walker LM, Campbell PG (2006) Dose-dependent cell growth in response to concentration modulated patterns of FGF-2 printed on fibrin. Biomaterials 27(10):2213CrossRefPubMedGoogle Scholar
  41. Miller ED, Phillippi JA, Fisher GW, Campbell PG, Walker LM, Weiss LE (2009) Inkjet printing of growth factor concentration gradients and combinatorial arrays immobilized on biologically-relevant substrates. Comb Chem High Throughput Screen 12(6):604–618CrossRefPubMedGoogle Scholar
  42. Miller ED, Li K, Kanade T, Weiss LE, Walker LM, Campbell PG (2011) Spatially directed guidance of stem cell population migration by immobilized patterns of growth factors. Biomaterials 32(11):2775–2785CrossRefPubMedPubMedCentralGoogle Scholar
  43. Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR (2003) Organ printing: computer-aided jet-based 3d tissue engineering. Trends Biotechnol 21(4):157CrossRefPubMedGoogle Scholar
  44. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785CrossRefPubMedGoogle Scholar
  45. Nakamura M (2012) Tissue engineering: a case study. In: Inkjet technology for digital fabrication, 1st edn. Wiley, Hoboken, pp 307–324Google Scholar
  46. Nakamura M, Kobayashi A, Takagi F, Watanabe A, Hiruma Y, Ohuchi K et al (2005) Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng 11(11–12):1658CrossRefPubMedGoogle Scholar
  47. Owczarczak AB, Shuford SO, Wood ST, Deitch S, Dean D (2012) Creating transient cell membrane pores using a standard inkjet printer. J Vis Exp 2012(61):e3681Google Scholar
  48. Paquian Gi, et al. (2016) Stem cell induction via inkjet-mediated gene transfection. ETD Collection for University of Texas, El Paso. AAI10249984Google Scholar
  49. Pataky K, Braschler T, Negro A, Renaud P, Lutolf MP, Brugger J (2012) Microdrop printing of hydrogel bioinks into 3d tissue-like geometries. Adv Mater 24(3):391CrossRefPubMedGoogle Scholar
  50. Phillippi JA, Miller E, Weiss L, Huard J, Waggoner A, Campbell P (2008) Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle- and bone-like subpopulations. Stem Cells 26(1):127–134CrossRefPubMedGoogle Scholar
  51. Rayleigh L (1878) On the instability of jet. Proc Lond Math Soc 10(1):4–13CrossRefGoogle Scholar
  52. Rodríguez-Dévora JI, Zhang B, Reyna D, Shi ZD, Xu T (2012) High throughput miniature drug-screening platform using bioprinting technology. Biofabrication 4(3):035001CrossRefPubMedGoogle Scholar
  53. Rune E (1951) Measuring instrument of the recording type. US, US2566443Google Scholar
  54. Saunders RE, Gough JE, Derby B (2008) Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing. Biomaterials 29(2):193–203CrossRefPubMedGoogle Scholar
  55. Scoutaris N, Ross S, Douroumis D (2016) Current trends on medical and pharmaceutical applications of inkjet printing technology. Pharm Res 33(8):1799CrossRefPubMedGoogle Scholar
  56. Shattil SJ, Cunningham M, Wiedmer T, Zhao J, Sims PJ, Brass LF (1992) Regulation of glycoprotein IIb-IIIa receptor function studied with platelets permeabilized by the pore-forming complement proteins C5b-9. J Biol Chem 267(26):18424PubMedGoogle Scholar
  57. Silzel JW, Cercek B, Dodson C, Tsay T, Obremski RJ (1998) Mass-sensing, multianalyte microarray immunoassay with imaging detection. Clin Chem 44(9):2036–2043PubMedGoogle Scholar
  58. Sun W, Lal P (2002) Recent development on computer aided tissue engineering – a review. Comput Methods Prog Biomed 67(2):85–103CrossRefGoogle Scholar
  59. Svanholm E (2007) Printability and ink-coating interactions in inkjet printing. Faculty of Technology & Science, KarlstadGoogle Scholar
  60. Sweet RG (1965) High frequency recording with electrostatically deflected ink jets. Rev Sci Instrum 36(2):131–136CrossRefGoogle Scholar
  61. Tse C, Whiteley R, Yu T, Stringer J, Macneil S, Haycock JW et al (2016) Inkjet printing schwann cells and neuronal analogue NG108-15 cells. Biofabrication 8(1):015017CrossRefPubMedGoogle Scholar
  62. Weber C (1931) Zum zerfall eines flüssigkeitsstrahles. ZAMM 11(2):136–154CrossRefGoogle Scholar
  63. Xu C (2014) Freeform vertical and horizontal fabrication of alginate-based vascular-like tubular constructs using inkjetting. J Manuf Sci Eng 136(6):061020CrossRefGoogle Scholar
  64. Xu T, Petridou S, Lee EH, Roth EA, Vyavahare NR, Hickman JJ et al (2004) Construction of high-density bacterial colony arrays and patterns by the ink-jet method. Biotechnol Bioeng 85(1):29–33CrossRefPubMedGoogle Scholar
  65. Xu T, Jin J, Gregory C, Hickman JJ, Boland T (2005) Inkjet printing of viable mammalian cells. Biomaterials 26(1):93CrossRefPubMedGoogle Scholar
  66. Xu T, Gregory CA, Molnar P, Cui X, Jalota S, Bhaduri SB et al (2006) Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials 27(19):3580–3588PubMedGoogle Scholar
  67. Xu T, Baicu C, Aho M, Zile M, Boland T (2009a) Fabrication and characterization of bio-engineered cardiac pseudo tissues. Biofabrication 1(3):035001CrossRefPubMedPubMedCentralGoogle Scholar
  68. Xu T, Rohozinski J, Zhao W, Moorefield EC, Atala A, Yoo JJ (2009b) Inkjet-mediated gene transfection into living cells combined with targeted delivery. Tissue Eng A 15(1):95CrossRefGoogle Scholar
  69. Xu F, Celli J, Rizvi I, Moon S, Hasan T, Demirci U (2011) A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform. Biotechnol J 6(2):204CrossRefPubMedPubMedCentralGoogle Scholar
  70. Xu C, Chai W, Huang Y, Markwald RR (2012) Scaffold-free inkjet printing of three-dimensional zigzag cellular tubes. Biotechnol Bioeng 109(12):3152–3160CrossRefPubMedGoogle Scholar
  71. Xu T, Zhao W, Zhu JM, Albanna MZ, Yoo JJ, Atala A (2013) Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials 34(1):130–139CrossRefPubMedGoogle Scholar
  72. Yamaguchi S, Ueno A, Akiyama Y, Morishima K (2012) Cell patterning through inkjet printing of one cell per droplet. Biofabrication 4(4):045005CrossRefPubMedGoogle Scholar
  73. Yamazoe H, Tanabe T (2009) Cell micropatterning on an albumin-based substrate using an inkjet printing technique. J Biomed Mater Res A 91A(4):1202–1209CrossRefGoogle Scholar
  74. Yanez M, Rincon J, Dones A, Maria CD, Gonzales R, Boland T (2015) In vivo assessment of printed microvasculature in a bilayer skin graft to treat full-thickness wounds. Tissue Eng A 21(1–2):224CrossRefGoogle Scholar
  75. Zoltan SI (1972) Pulsed droplet ejecting system. US, US 3683212 AGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Xinda Li
    • 1
  • Jianwei Chen
    • 2
  • Boxun Liu
    • 2
  • Xiong Wang
    • 3
  • Dongni Ren
    • 4
  • Tao Xu
    • 1
    • 2
    • 3
  1. 1.Biomanufacturing Center, Department of Mechanical EngineeringTsinghua UniversityBeijingPeople’s Republic of China
  2. 2.Department of Precision Medicine and HealthcareTsinghua-Berkeley Shenzhen InstituteShenzhenPeople’s Republic of China
  3. 3.Biomanufacturing Engineering Research LaboratoryGraduate School at Shenzhen Tsinghua UniversityShenzhenPeople’s Republic of China
  4. 4.Medprin Regenerative Medical Technologies Co., Ltd.GuangzhouPeople’s Republic of China

Personalised recommendations